Вписанные углы РMN и KNM опираются на равные хорды. Следовательно, дуги, стягиваемые этим хордами, равны. Вписанные углы, опирающиеся на равные дуги (или на равные хорды), равны.
∠РMN=∠KNM
Проведем хорды МР и КN.
В треугольниках MPN и MKN вписанные ∠Р = ∠К (опираются на диаметр).⇒
Прямоугольные ∆ МРN=∆ MKN по острому углу и общей гипотенузе.
Отсюда следует равенство PNM=KMN
Эти углы - накрестлежащие при пересечении РN и MK секущей MN.
Если при пересечении двух прямых секущей накрестлежащие углы равны. эти прямые - параллельны. Доказано.
a²+b²=2(25²+39²) подставляя и решая , получаем, также находим h из первых формул a=34 b=56 h=6
в основании имеем треугольники, являющимися половинами оснований.Эти треугольники будут со сторонами 39,25 и 34 либо 39,25 и 56. Площади их равны (диагонали делят параллелограмм пополам). Находим по формуле Герона их площади (любого треугольника) , она будет = 420. Тогда площадь основания = 420*2=840
Вписанные углы РMN и KNM опираются на равные хорды. Следовательно, дуги, стягиваемые этим хордами, равны. Вписанные углы, опирающиеся на равные дуги (или на равные хорды), равны.
∠РMN=∠KNM
Проведем хорды МР и КN.
В треугольниках MPN и MKN вписанные ∠Р = ∠К (опираются на диаметр).⇒
Прямоугольные ∆ МРN=∆ MKN по острому углу и общей гипотенузе.
Отсюда следует равенство PNM=KMN
Эти углы - накрестлежащие при пересечении РN и MK секущей MN.
Если при пересечении двух прямых секущей накрестлежащие углы равны. эти прямые - параллельны. Доказано.
S1=a*h=204 => h=204/a
S2=b*h=336 => h=336/b
значит 204/a=336/b => a=17b/28
по формуле сумм диагоналей и сторон имеем
a²+b²=2(25²+39²)
подставляя и решая , получаем, также находим h из первых формул
a=34
b=56
h=6
в основании имеем треугольники, являющимися половинами оснований.Эти треугольники будут со сторонами 39,25 и 34 либо 39,25 и 56. Площади их равны (диагонали делят параллелограмм пополам). Находим по формуле Герона их площади (любого треугольника) , она будет = 420.
Тогда площадь основания = 420*2=840
V=840*6=5040