Вправильной четырехугольной пирамиде sabcd плоскость сечения проходит через вершину а и перпендикулярна ребру sc.длина стороны основания пирамиды равна 12 см, а боковые ребра наклонены к плоскости основания под углом 60 градусов. вычислите объем пирамиды, вершиной которой является точка s, а основанием - сечение данной пирамиды
есть неравенство вида x^2-0,1x<0,
исследуем функцию: т.к. коэффициент при x^2 больше 0 -> ветви параболы направленны в верх, теперь найдем решения уравнения x^2-0.1x=0 - >
x(x-0.1)=0 -> x=0 или x=0.1 ; и т.к ветви параболы направленны вверх , то все что лежит в промежутке (-inf ; 0) U (0.1 ; inf) (inf - бесконечность) ,будет строго больше 0 , а при корнях уравнения которое мы решили , получим что значение выражения 0 -> на промежутке (0;0,1) парабола ниже оси OX - > x^2-0,1x<0 при x ∈ (0;0,1)
Теперь второй вариант.
Здесь на 24 градуса больше угол при основании.Так же составляем уравнение(х-угол против основания,х+24-угол при основании и так же другой,равный ему угол при основании.)Имеем уравнение:х+х+24+х+24=180;3х+48=180;х=44,значит,угол против основания равен 44 градуса,а прилежащие к основанию равны по 68 градусов