Вправильной четырехугольной пирамиде sabcd точка s- вершина ,ab=8, sc=6.точка m принадлежит ребру sa,точка k-ребру sc, причём am/ms=ck/ks=1/2.найдите угол между плоскостями bmk и abc.
Найдем высоту пирамиды SO из треугольника BSO. Катет ВО равен 4√2 как половина диагонали квадрата (это основание пирамиды со стороной 8): SO = √(6² - (4√2)²) = √(36-32) = √4 = 2. Так как отрезок МК параллелен диагонали АД, то он отсекает на высоте одну третью часть (свойство подобных треугольников), которая равна: ОР = (1/3)*2 = 2/3. Угол ВОР - это угол пересечения заданных плоскостей (угол между плоскостями — это угол между перпендикулярами к линии их пересечения, проведенными в этих плоскостях). Тангенс этого угла равен tg α = (2/3) / (4√2) = 1 /(6√2) = 0,117851. Угол равен arc tg 0,117851 = 0,11731 радиан = 6,721369°.
Катет ВО равен 4√2 как половина диагонали квадрата (это основание пирамиды со стороной 8):
SO = √(6² - (4√2)²) = √(36-32) = √4 = 2.
Так как отрезок МК параллелен диагонали АД, то он отсекает на высоте одну третью часть (свойство подобных треугольников), которая равна:
ОР = (1/3)*2 = 2/3.
Угол ВОР - это угол пересечения заданных плоскостей (угол между плоскостями — это угол между перпендикулярами к линии их пересечения, проведенными в этих плоскостях).
Тангенс этого угла равен tg α = (2/3) / (4√2) = 1 /(6√2) = 0,117851.
Угол равен arc tg 0,117851 = 0,11731 радиан = 6,721369°.