Следовательно, треугольники ACE и CED равны, так как у них равны стороны и угол между ними. Следовательно, площадь AEC = CED = 85
Из формулы площади прямоугольного треугольника S = a*b/2 найдём AE:
AE = S*2/EC = 85 * 2 / 17 = 10
AE ║BC так как это трапеция. Опустим высоту из точки А на прямую BC. Получим прямоугольный треугольник AOB (представим его мысленно). Так вот, его площадь надо будет вычесть из площади прямоугольника AECO. Вычислим:
Итак, нам дана площадь ΔACE равная 85.
∠AEC = ∠CED = 90
AE = ED
CE общая для ΔACE и ΔCED
Следовательно, треугольники ACE и CED равны, так как у них равны стороны и угол между ними. Следовательно, площадь AEC = CED = 85
Из формулы площади прямоугольного треугольника S = a*b/2 найдём AE:
AE = S*2/EC = 85 * 2 / 17 = 10
AE ║BC так как это трапеция. Опустим высоту из точки А на прямую BC. Получим прямоугольный треугольник AOB (представим его мысленно). Так вот, его площадь надо будет вычесть из площади прямоугольника AECO. Вычислим:
Площадь AOB = 17*(10-6)/2=34
Итак, общая площадь трапеции равна:
17*10 - 34 + 85 = 221
ответ: 221
Площадь боковой поверхности равна 756 дм².
Площадь полной поверхности равна 1145 дм².
Объяснение:
Площадь боковой стороны усеченной пирамиды равна площади равнобочной трапеции с основаниями 17 и 10 дм и высотой, равной апофеме 14 дм.
дм².
В площади боковой стороны таких трапеций четыре.
Значит
дм².
Площадь полной поверхности равна сумме площади боковой поверхности и площадей оснований.
Площадь меньшего основания равна площади квадрата со стороной 10 дм
дм².
Площадь большего основания равна площади квадрата со стороной 17 дм
дм².
Теперь надо сложить все эти три площади
дм².