Вправильной четырехугольной призме abcda1b1c1d1 точка k делит боковое ребро aa1 в отношении ak: ka1 = 1: 2. через точки b и k проведена плоскость l, параллельная прямой ac и пересекающая ребро dd1 в точке m. найдите площадь сечения, если известно,что ab=4, aa1=6.
Отрезок АК = 6*(1/3) = 2.
Сторона ромба равна √(4²+2²) = √(16+4) = √20 = 2√5.
Найдём диагонали ромба.
Так как плоскость сечения параллельна диагонали основания призмы АС, то она пересекает ребро СС₁ в точке Е на таком же расстоянии, что и ребро АА₁: СЕ - АК = 2.
Поэтому диагональ ромба ЕК = АС = 4√2.
Расстояние от точки А до линии пересечения плоскости основания и заданной плоскости (точка К₁) равно половине диагонали основания: АК₁ = ОВ = 4*cos45° = 4*(√2/2) = 2√2.
Расстояние КК₁ равно половине диагонали искомого сечения.
КК₁ = √(АК²+ АК₁²) = √(2²+(2√2)²) = √(4+8) = √12 =2√3.
Вторая диагональ ВМ = 2*КК₁ = 2*2√3 = 4√3.
Площадь сечения ромба ВЕМК равна:
S = (1/2)d₁*d₂ = (1/2)*(4√2)*(4√3) = 8√6 = 19.59592 кв.ед.
Эту же площадь можно определить другим
Угол наклона плоскости заданного сечения равен:
α = arc tg(2/(2√2) = arc tg(1/√2) = arc tg 0.707107= 0.61548 радиан = 35.26439 градуса.
Косинус этого угла равен 0.816497.
Тогда искомая площадь равна площади основания призмы, делённой на косинус угла α:
S = (4*4)/0.816497 = 19.59592 кв.ед.