Вправильной четырехугольной призме сторона основания равна 5, боковое ребро равно 20. найти площадь сечения, проведенного через диагональ призмы параллельно диагонали основания. как будет выглядеть сечение?
1. Рассмотрим треугольники, образованные соединением середин сторон треугольника. Они равны (по прямым углам и катетам). Значит гипотезы равны => у четырёхугольника все стороны равны. 2. Рассмотрим противолежащие углы образованного четырёхугольника. Они равны развёрнутому углу минус два равных угла, прилежащих к гипотенузе. Так как треугольники равны, то соответствующие углы равны, значит и противолежащие углы четырёхугольника равны. 3. Параллелограмм, у которого все стороны равны, является ромбом. Четырёхугольник, у которого противолежащие углы равны, является параллелограммом. Следовательно, четырёхугольник - ромб. Ч.т.д.
Проведем диагональ трапеции и рассмотрим образовавшиеся треугольники. Пара противоположных сторон ромба являются средними линиями этих треугольников, каждая из них параллельна этой диагонали и равна ее половине. Отсюда эта пара - равные и параллельные стороны, т.е. четырехугольник - параллелограмм. Аналогично другая пара противоположных сторон равны. А т.к.к трапеция равнобедренная, то ее диагонали равны. Значит все стороны четырехугольника равны. Таким образом, четырехугольник - параллелограмм с равными сторонами, т.е. ромб.
2. Рассмотрим противолежащие углы образованного четырёхугольника. Они равны развёрнутому углу минус два равных угла, прилежащих к гипотенузе. Так как треугольники равны, то соответствующие углы равны, значит и противолежащие углы четырёхугольника равны.
3. Параллелограмм, у которого все стороны равны, является ромбом. Четырёхугольник, у которого противолежащие углы равны, является параллелограммом. Следовательно, четырёхугольник - ромб. Ч.т.д.