В правильной треугольной пирамиде боковое ребро равно 7, а сторона основания 4,5. Найдите высоту. Сделаем рисунок. Пусть это будет пирамида МАВС. Основание высоты правильной треугольной пирамиды совпадает с центром описанной ( как, впрочем, и вписанной) окружности вокруг основания ( правильного треугольника). Радиус описанной окружности можно выразить через сторону треугольника R=a/√3 Тогда высоту пирамиды МО найдем по т. Пифагора: МО²=МС²-ОС² МО²=49- а²/3 МО²=(147-20,25):3=126,75:3=42,25 МО=√42,25=6,5
Сделаем рисунок.
Пусть это будет пирамида МАВС.
Основание высоты правильной треугольной пирамиды совпадает с центром описанной ( как, впрочем, и вписанной) окружности вокруг основания ( правильного треугольника).
Радиус описанной окружности можно выразить через сторону треугольника R=a/√3
Тогда высоту пирамиды МО найдем по т. Пифагора:
МО²=МС²-ОС²
МО²=49- а²/3
МО²=(147-20,25):3=126,75:3=42,25
МО=√42,25=6,5