Вправильной треугольной пирамиде sabc с основанием abc точка м -середина ребра sa,точка к-середина sb.найдите площадь сечения cmk этой пирамиды. не могу решить, .
Объяснение: Соединим С и В. Угол АСВ опирается на диаметр и равен половине градусной меры дуги АВ. Угол АСВ=90°.
Отрезок СD - высота ∆ АСВ, АD и ВD - проекции катетов на гипотенузу. Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.⇒ АС=√(AD•AB). Примем АD=х, тогда ВD=х+10, а гипотенуза АВ=2х+10. ⇒ х•(2х+10)=72.
Выполнив необходимые действия и сократив все члены на 2, получим приведенное квадратное уравнение х²+5х-36=0 По т.Виета сумма корней приведённого квадратного трехчлена равна его второму коэффициенту с противоположным знаком, а произведение – свободному члену.
х₁+х₂=-5
х₁•х₂=36
-36=-9+4
-5= -9+4 ⇒ х=4, (отрицательный корень -9 не подходит).
Диаметр АВ=4+14=18 см, а радиус, соответственно, 18:2=9 см
* * *
Ясно, что задачу можно решить и через дискриминант. ответ будет тем же.
Мне решили на этом сайте очень хороший человек,думаю это решение и тебе пригодиться:)поблагодарить можешь ellagabdullina
По теореме Пифагора найдем в нем гипотенузу ВС.
ВС^2 = 24^2 + 18^2 = 576 + 324 = 900
ВC = корень из 900 = 30
Воспользуемся свойством пропорциональных отрезков в прямоугольном треугольнике АВС.
ВД = под корнем СД*АД
24 = под корнем 18 *АД
24^2 = 18*АД
576 = 18АД
АД = 576 : 18 = 32
Тогда АС = 32+18 = 50
В прямоуг. треугольнике АВС найдем катет АВ по теореме Пифагора
АB^2 = 50^2 - 30^2 = 2500 - 900 = 1600/ Тогда АВ = корень из 1600 = 40(см)
cos A = AB/AC = 40/50 = 4/5 = 0,8
ответ: АВ = 40 см; cos А = 0,8
ответ: 9 см
Объяснение: Соединим С и В. Угол АСВ опирается на диаметр и равен половине градусной меры дуги АВ. Угол АСВ=90°.
Отрезок СD - высота ∆ АСВ, АD и ВD - проекции катетов на гипотенузу. Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.⇒ АС=√(AD•AB). Примем АD=х, тогда ВD=х+10, а гипотенуза АВ=2х+10. ⇒ х•(2х+10)=72.
Выполнив необходимые действия и сократив все члены на 2, получим приведенное квадратное уравнение х²+5х-36=0 По т.Виета сумма корней приведённого квадратного трехчлена равна его второму коэффициенту с противоположным знаком, а произведение – свободному члену.
х₁+х₂=-5
х₁•х₂=36
-36=-9+4
-5= -9+4 ⇒ х=4, (отрицательный корень -9 не подходит).
Диаметр АВ=4+14=18 см, а радиус, соответственно, 18:2=9 см
* * *
Ясно, что задачу можно решить и через дискриминант. ответ будет тем же.