Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Обозначим данный треугольник буквами ABC, одну из его биссектрис - AM, остальные биссектрисы - BH и CK. Данный треугольник также является равнобедренным. По свойству биссектрисы, проведенной из вершины равнобедренного треугольника, AM также будет являться его высотой и медианой. Значит, так как сторона BC также равна 14 корней из 3, то BM =(14 корней из 3)/2 = (14 и 2 сокращаются) 7 корней из 3. Так как угол ABM = 90 градусам, то по теореме Пифагора AB^2 = AM^2 + BM^2; 588 = AM^2 + 147; AM^2 = 588-147; AM^2 = 441; AM = 21. Биссектрисы равностороннего треугольника равны, значит, AM = BH = CK. ответ: 21;21;21.
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
Данный треугольник также является равнобедренным. По свойству биссектрисы, проведенной из вершины равнобедренного треугольника, AM также будет являться его высотой и медианой. Значит, так как сторона BC также равна 14 корней из 3, то BM =(14 корней из 3)/2 = (14 и 2 сокращаются) 7 корней из 3.
Так как угол ABM = 90 градусам, то по теореме Пифагора AB^2 = AM^2 + BM^2; 588 = AM^2 + 147; AM^2 = 588-147; AM^2 = 441; AM = 21.
Биссектрисы равностороннего треугольника равны, значит, AM = BH = CK.
ответ: 21;21;21.