М=середина ас, значит ее координаты найдем как среднее арифметическое координат точек а и с м(-1; -1; -1) ас=(8; 12; -8) bm=(-5; -3; 1) cos(ac; bm)=(ac*bm)/(/ac//bm/) в числителе - скалярное произведение, в знаменателе - модули, то есть длины векторов ac*bm=-40-36-8=-84 /ac/=√(64+144+64)=√272 /bm/=√(25+9+1)=√35 cos(ac; bm)=-84/(√272√35)=-84/(4√17√7√5)=-21/√595 ∠(ac; bm)=arccos(-21/√595) -искомый угол, значение нетабличное, по другому не запишешь ответ: arccos(-21/√595)
AD^2+AC^2-2AD*AC*cos(a/2)=DC^2
************
-2AB*AC*cos(a/2)=BC^2-(AB^2+AC^2)
-2AD*AC*cos(a/2)=DC^2-(AD^2+AC^2)
************
(BC^2-(AB^2+AC^2))*AD=(DC^2-(AD^2+AC^2))*AB
AC^2*(AB-AD)=(DC^2-AD^2)*AB-(BC^2-AB^2)*AD
AC^2=((DC^2-AD^2)*AB-(BC^2-AB^2)*AD)/ (AB-AD)=
=((2^2-4^2)*3-(3-3^2)*4)/ (3-4)=12
*********************
АВ=3, ВС=√3, CD=2, AD=4, AC = 2√3
***************
cos(a/2)=(BC^2-(AB^2+AC^2))/(-2AB*AC)=(3-(3^2+12))/(-2*3*2*корень(3) ) = корень(3)/2
а = 60 градусов
cos(в)=(АC^2-(AB^2+ВC^2))/(-2AB*ВC) = (12-(3^2+3))/(-2*3*корень(3)) = 0
в = 90 градусов
cos(д)=(АC^2-(АД^2+ДC^2))/(-2AД*ДC) = (12-(4^2+2^2))/(-2*4*2) = 0,5
d = 60 градусов
c=360 -60- 90 - 60 = 150 градусов
ВД = корень(АВ^2+АД^2-2*AB*АД*cos(a))=корень(3^2+4^2-2*3*4*cos(pi/3))= корень(13)