Впространстве даны две параллельные прямые а и b, а также точку а, не принадлежащая им. сколько существует плоскостей, проходящих через точку а и параллельные прямым а и b?
насколько я понимаю, одну либо ни одной, нужны лишь 2 рисунка
Sромба=1/2 * d1 * d2, где d1,d2 - диагонали ромба. Диагонали относятся как 5 : 12 - это означает, что d1=АС=5х, d2=ВD=12х ⇒ 480=1/2*5х*12х ⇒ 480=1/2*60х² ⇒ 480=30х² ⇒ х²=16 ⇒ х=4 и х= -4 (игнорируем, т.к. сторона не может иметь отрицательное значение) ⇒ d1=АС=5*4=20, d2=ВD=12*4=48 Диагонали ромба пересекаются под углом=90° и точкой пересечения О делятся пополам ⇒ стороны прямоугольного ΔАОВ будут равны: АО=10 и ВО=24. По теореме Пифагора находим сторону ромба: АВ²=АО²+ВО²=10²+24²=100+576=676 ⇒АВ=26 Тогда Р ромба = 4*АВ = 4* 26 = 104. ответ: 104 см
1. Так как дан правильный тетраедр, то независимо от данных граней искомое сечение будет являться равносторонним треугольником MNK. При построении этого сечения необходимо провести параллельные отрезки каждой стороне грани ADB, которая по определению правильного тетраэдра — равносторонний треугольник. Таким образом искомое сечение тоже является равносторонним треугольником, подобным треугольнику ADB.
2. Рассмотрим рисунок грани DCB, через центр O которой мы проводим сторону сечения NK.
image
3. Центр равностороннего треугольника находится в точке пересечения высот, биссектрис и медиан и делит медиану (которая также является высотой и биссектрисой) в отношении 2:1, другими словами отношение большой части медианы к всей медиане 2:3.
4. Значит, отношение стороны сечения к ребру тетраэдра также 2:3.
5. Если обозначить ребро тетраэдра через a и сторону сечения через b, то ba=23 и b=2a3.
6. Площадь равностороннего треугольника определяется по формулеSMNK=b2⋅3√4=4⋅a2⋅3√9⋅4=a2⋅3√9=32⋅3√9
7. В результате рассчётов, площадь сечения — SMNK=1⋅3√ см2.
Диагонали относятся как 5 : 12 - это означает, что d1=АС=5х, d2=ВD=12х ⇒ 480=1/2*5х*12х ⇒ 480=1/2*60х² ⇒
480=30х² ⇒ х²=16 ⇒ х=4 и х= -4 (игнорируем, т.к. сторона не может иметь отрицательное значение) ⇒ d1=АС=5*4=20, d2=ВD=12*4=48
Диагонали ромба пересекаются под углом=90° и точкой пересечения О делятся пополам ⇒ стороны прямоугольного ΔАОВ будут равны: АО=10 и ВО=24. По теореме Пифагора находим сторону ромба: АВ²=АО²+ВО²=10²+24²=100+576=676 ⇒АВ=26
Тогда Р ромба = 4*АВ = 4* 26 = 104.
ответ: 104 см
Объяснение:<!--c-->
image
1. Так как дан правильный тетраедр, то независимо от данных граней искомое сечение будет являться равносторонним треугольником MNK. При построении этого сечения необходимо провести параллельные отрезки каждой стороне грани ADB, которая по определению правильного тетраэдра — равносторонний треугольник. Таким образом искомое сечение тоже является равносторонним треугольником, подобным треугольнику ADB.
2. Рассмотрим рисунок грани DCB, через центр O которой мы проводим сторону сечения NK.
image
3. Центр равностороннего треугольника находится в точке пересечения высот, биссектрис и медиан и делит медиану (которая также является высотой и биссектрисой) в отношении 2:1, другими словами отношение большой части медианы к всей медиане 2:3.
4. Значит, отношение стороны сечения к ребру тетраэдра также 2:3.
5. Если обозначить ребро тетраэдра через a и сторону сечения через b, то ba=23 и b=2a3.
6. Площадь равностороннего треугольника определяется по формулеSMNK=b2⋅3√4=4⋅a2⋅3√9⋅4=a2⋅3√9=32⋅3√9
7. В результате рассчётов, площадь сечения — SMNK=1⋅3√ см2.