Впространстве расположен параллелограмм abcd и произвольный четырехугольник a1b1c1d1. докажите, что точки пересечения медиан треугольников а1вв1, в1сс1, c1dd1 и a1ad1 являются вершинами параллелограмма.
Объяснение: Пусть все три данных отрезка пересекаются в точке О. Обозначим ВН высоту из В, АК - биссектрису, МО - срединный перпендикуляр к АВ.
Треугольник АОВ - равнобедренный, т.к. его высота ОМ - медиана ( проходит через середину АВ), поэтому∠ВАО=∠АВО. Примем их равными α каждый. Так как АК - биссектриса, ∠ОАН=∠ВАО=α, а угол ∠ВАН=2 α. В прямоугольном треугольнике сумма острых углов равна 90°. 3α=90°, ⇒ α=30°
Книги это источник знаний. Сейчас каждого встречного можно увидеть с телефон, планшетом и любой другой техникой. Мы и не задумываемся зачем нам книги. Когда мы читаем мы становимся образованным человеком, начинаем правильно излагать свою мысль. Сейчас почти каждый не образованный, мы встречаем их на улице, в школе, на уроке они везде. Известны случаи когда люди играли в телефон и погибли. Так вот книги эта жизнь автора, проблема с которой он столкнулся. И он учиться выражать свою мысль. Добавь от себя
ответ: 50°
Объяснение: Пусть все три данных отрезка пересекаются в точке О. Обозначим ВН высоту из В, АК - биссектрису, МО - срединный перпендикуляр к АВ.
Треугольник АОВ - равнобедренный, т.к. его высота ОМ - медиана ( проходит через середину АВ), поэтому∠ВАО=∠АВО. Примем их равными α каждый. Так как АК - биссектриса, ∠ОАН=∠ВАО=α, а угол ∠ВАН=2 α. В прямоугольном треугольнике сумма острых углов равна 90°. 3α=90°, ⇒ α=30°
В прямоугольном ∆ СВН ∠СВН=90°-∠ВСН=90°-70°=20°
Угол АВС=∠АВН+∠СВН=30°+20°=50°