То есть оба куска смещены по оси ОХ на 3 единицы вправо, а смещение по ОУ зависит от самого куска: левый кусок (x<3)(x<3) смещен на 7 единиц вниз, а правый (x>3)(x>3) - на 5 единиц вниз.
Кстати, в x=3x=3 - разрыв, поэтому на графике будут две выколотые точки - слева и справа.
Сам график строится так:
Строятся полностью оба куска (довольно легко, по факту из новой точки - в 1-ом куске (3;-5), во 2-м (3;-7) строим самые параболы y=x^2y=x
2
, ну то есть мысленно представляем, что, например, точка (3;-5) является началом координат и от неё параболку шаблонную строим с заученной наизусть таблицей) и на каждом интервале остается только та часть, которая указана в системе.
Картинка 1 - два графика разным цветом
Картинка 2 - итоговый график, то есть после того, как ненужные части были убраны и был добавлен разрыв
Пусть основание = х, тогда каждая из боковых сторон = х+1 х + х+1 + х+1 = 50 3х + 2 = 50 3х = 50 - 2 3х = 48 х = 48 : 3 х = 16 м - основание
х+1 = 16+1 = 17 м - боковые стороны
Площадь можно найти разными
Например, найдем высоту (h), опущенную к основанию. Эта высота является также медианой, значит, разделит основание пополам, тогда по теореме Пифагора: h = √(17²-8²) = √(289-64) = √225 = 15 м S = (1/2) * 16 * 15 = 120 м²
Можно по формуле Герона: р = 50/2 = 25 S = √(25(25-17)(25-17)(25-16)) = √(25*8*8*9) = √14400 = 120 м²
Очевидно, что здесь график будет основан на параболе.
Сейчас посмотрим, что будет при раскрытии модуля
\displaystyle |x-3| = \left \{ {{x-3,x>3} \atop {3-x, x<3}} \right.∣x−3∣={
3−x,x<3
x−3,x>3
Не стал рассматривать x=3x=3 , потому что он в знаменателе дроби.
При положительном раскрытии дробь равна 1, при отрицательном раскрытии дробь равна -1.
Итого имеем:
\displaystyle y=\left \{ {{x^2-6x+1+3, x>3} \atop {x^2-6x-1+3, x<3}} \right.y={
x
2
−6x−1+3,x<3
x
2
−6x+1+3,x>3
То есть \displaystyle y=\left \{ {{x^2-6x+4, x>3} \atop {x^2-6x+2, x<3}} \right.y={
x
2
−6x+2,x<3
x
2
−6x+4,x>3
Чтобы было удобно строить, выделим полный квадрат и увидим, что оба куска различаются лишь расположением по оси ОУ, а так та же парабола.
\displaystyle y=\left \{ {{x^2-6x+9-9+4=(x-3)^2-5, x>3} \atop {x^2-6x+9-9+2=(x-3)^2-7, x<3}} \right.y={
x
2
−6x+9−9+2=(x−3)
2
−7,x<3
x
2
−6x+9−9+4=(x−3)
2
−5,x>3
То есть оба куска смещены по оси ОХ на 3 единицы вправо, а смещение по ОУ зависит от самого куска: левый кусок (x<3)(x<3) смещен на 7 единиц вниз, а правый (x>3)(x>3) - на 5 единиц вниз.
Кстати, в x=3x=3 - разрыв, поэтому на графике будут две выколотые точки - слева и справа.
Сам график строится так:
Строятся полностью оба куска (довольно легко, по факту из новой точки - в 1-ом куске (3;-5), во 2-м (3;-7) строим самые параболы y=x^2y=x
2
, ну то есть мысленно представляем, что, например, точка (3;-5) является началом координат и от неё параболку шаблонную строим с заученной наизусть таблицей) и на каждом интервале остается только та часть, которая указана в системе.
Картинка 1 - два графика разным цветом
Картинка 2 - итоговый график, то есть после того, как ненужные части были убраны и был добавлен разрыв
х + х+1 + х+1 = 50
3х + 2 = 50
3х = 50 - 2
3х = 48
х = 48 : 3
х = 16 м - основание
х+1 = 16+1 = 17 м - боковые стороны
Площадь можно найти разными
Например, найдем высоту (h), опущенную к основанию. Эта высота является также медианой, значит, разделит основание пополам, тогда по теореме Пифагора:
h = √(17²-8²) = √(289-64) = √225 = 15 м
S = (1/2) * 16 * 15 = 120 м²
Можно по формуле Герона:
р = 50/2 = 25
S = √(25(25-17)(25-17)(25-16)) = √(25*8*8*9) = √14400 = 120 м²
ответ: 120 м²