№1. Обозначим одну сторону параллелограмма x, тогда другая сторона будет x+29. Периметр параллелограмма: 2x+2(x+29)=82 2x+2x+58=82 4x=24 x=6 x=6 - меньшая сторона параллелограмма.
№2. Найдем основание равнобедренного треугольника: 98-2*25=48 (Для нахождения площади треугольника можно воспользоваться разными формулами, например формулой Герона). Мы опустим высоту к основанию и найдем ее длину по теореме Пифагора. Т.к. высота к основанию в равнобедренном треугольнике является также медианой, то делит основание пополам. H= Найдем площадь треугольника S=
№3. Вписанный угол равен половине дуги, на которую он опирается. Значит нам надо найти дугу окружности AB, не содержащую точку С. 360°-(185°+43°)=132° Вписанный угол АСВ равен 132:2=66°
при ВС ∥АД и секущей СО
Но угол ВСО=углу ОСД по условию.
Значит, в треугольнике СОД угол СОД=углу ОСД и треугольник ОСД - равнобедренный
ОД=СД=17
2 Угол ВОА=углу ОВС как накрест лежащие при ВС ∥АД и секущей ВО
Но угол ОВС = углу АВО по условию
Значит, в треугольнике АВО углы при основании равны и он - равнобедренный.
АВ=АО=10
3. АД= АО+ОД=10+17=27
4. В прямоугольном треугольнике АВК найдем АК по теореме Пифагора.
АК =корень из ( 10^2-8^2)=6
5. В прямоуг. треугольнике МСД найдем МД по теореме Пифагора
МД = корень из ( 17^2-8^2)=15
6.ВС= АД-АК-МД=27-6-15=6
7.Ищем площадь классически - полусумма оснований на высоту. S авсд= (6+27 *8)/2=132
Обозначим одну сторону параллелограмма x, тогда другая сторона будет x+29.
Периметр параллелограмма: 2x+2(x+29)=82
2x+2x+58=82
4x=24
x=6
x=6 - меньшая сторона параллелограмма.
№2.
Найдем основание равнобедренного треугольника: 98-2*25=48
(Для нахождения площади треугольника можно воспользоваться разными формулами, например формулой Герона).
Мы опустим высоту к основанию и найдем ее длину по теореме Пифагора. Т.к. высота к основанию в равнобедренном треугольнике является также медианой, то делит основание пополам.
H=
Найдем площадь треугольника S=
№3.
Вписанный угол равен половине дуги, на которую он опирается. Значит нам надо найти дугу окружности AB, не содержащую точку С. 360°-(185°+43°)=132°
Вписанный угол АСВ равен 132:2=66°