Обозначим стороны основания параллелепипеда как a и b, сторону диагонального сечения как c, а высоту параллелепипеда как h.
Запишем условия задачи математически:
a = x - обозначим размер одной стороны как x. Условие "отношение сторон есть 2:1" можно записать в виде: b = 2*a
Подставив x получаем: b = 2*x
Площадь квадратного сечения можно представить так: c * c = 25
Откуда мы сразу же получаем значение для стороны сечения: c = 5.
К тому же, можно заметить, что h = c, т.к. сечение параллелепипеда есть квадрат!
Вспомним формулу для объема параллелепипеда: V = a * b * h
Подставим в формулу значения:
Упростим:
Чтобы на основе найденных значений мы получили a и b, рассмотрим как связаны между собой a, b и c.
Эти три отрезка образуют прямоугольный треугольник с катетами a и b и гипотенузой c (потому что наш параллелепипед прямоугольный, а значит угол между отрезками a и b равен 90 градусов).
Составим уравнение по теореме Пифагора:
Теперь подставим для всех сторон соответствующие значения:
Далее:
Итого получаем:
Решать это уравнение дальше нам не нужно, так как в формуле для объёма у нас есть !
Просто подставляем найденное значение в формулу объёма и получаем ответ:
Запишем условия задачи математически:
a = x - обозначим размер одной стороны как x.
Условие "отношение сторон есть 2:1" можно записать в виде:
b = 2*a
Подставив x получаем:
b = 2*x
Площадь квадратного сечения можно представить так:
c * c = 25
Откуда мы сразу же получаем значение для стороны сечения:
c = 5.
К тому же, можно заметить, что h = c, т.к. сечение параллелепипеда есть квадрат!
Вспомним формулу для объема параллелепипеда:
V = a * b * h
Подставим в формулу значения:
Упростим:
Чтобы на основе найденных значений мы получили a и b, рассмотрим как связаны между собой a, b и c.
Эти три отрезка образуют прямоугольный треугольник с катетами a и b и гипотенузой c (потому что наш параллелепипед прямоугольный, а значит угол между отрезками a и b равен 90 градусов).
Составим уравнение по теореме Пифагора:
Теперь подставим для всех сторон соответствующие значения:
Далее:
Итого получаем:
Решать это уравнение дальше нам не нужно, так как в формуле для объёма у нас есть !
Просто подставляем найденное значение в формулу объёма и получаем ответ: