Впрямоугольном треугольнике авс гипотенуза равна 10 а катет асравен 5 найдите второй катет и острые углы треугольника варианты: а) 45° в)5 корней из трех с)50° d)четыре корня из трех е)четыре корня из двух g)60°h)пять корней из двух
Окружность, проходящая через все три вершины треугольника, называется его описанной окружностью. Центр описанной окружности лежит на пересечении серединных перпендикуляров к сторонам треугольника. Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.Описанная окру́жность многоугольника — окружность, содержащая все вершины многоугольника. Центром является точка (принято обозначать {\displaystyle O}O) пересечения серединных перпендикуляров к сторонам многоугольника.Если все стороны треугольника касаются окружности, то окружность называется вписанной в треугольник, а треугольник - описанным около этой окружности.
Теорема. В любой треугольник можно вписать окружность и при этом только одну.
Центр вписанной в треугольник окружности находится в точке пересечения его биссектрис
Ну смотри: Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник. т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть: (10+18)/2*3=42. ответ:42
Окружность, проходящая через все три вершины треугольника, называется его описанной окружностью. Центр описанной окружности лежит на пересечении серединных перпендикуляров к сторонам треугольника. Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.Описанная окру́жность многоугольника — окружность, содержащая все вершины многоугольника. Центром является точка (принято обозначать {\displaystyle O}O) пересечения серединных перпендикуляров к сторонам многоугольника.Если все стороны треугольника касаются окружности, то окружность называется вписанной в треугольник, а треугольник - описанным около этой окружности.
Теорема. В любой треугольник можно вписать окружность и при этом только одну.
Центр вписанной в треугольник окружности находится в точке пересечения его биссектрис
Объяснение:
Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник.
т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть:
(10+18)/2*3=42. ответ:42