Впрямоугольном треугольнике из середины гипотенузы опущены перпендикуляры на катеты. используя теорему фалеса, докажите, что эти перпендикуляры являются средними линиями треугольника.
ТреугольникАВС, уголС=90, точка К-середина АВ, АК=КВ, КН - перпендикуляр на АС, КМ-перпендикуляр на ВС, КН параллельна ВС, КМ параллельна АС теорема Фалеса - если параллельные прямые которые пересекают стороны угла отсекают на одной его стороне равные отрезки, то они осекают равные отрезки и на другой стороне. АН=НС, КН - средняя линия треугольника АВС (соединяет середины сторон), ВМ=МС, КМ - средняя линия
теорема Фалеса - если параллельные прямые которые пересекают стороны угла отсекают на одной его стороне равные отрезки, то они осекают равные отрезки и на другой стороне. АН=НС, КН - средняя линия треугольника АВС (соединяет середины сторон), ВМ=МС, КМ - средняя линия