Впрямоугольной трапеции abcd угол d=90. точка к лежит на основании аd так, что ак=кd и вк перпендикулярно вс, о середина диагонали вd. доказать: ав: аd=во: вс найти: площадь треугольника. авd, если площадь пятиугольника равна 30 см2
Так как BK перпендикулярно AD и AK=KD, то ясно, что AБД равнобедренный треугольник. АБ и БД симметричны. БЦ паралельно АД, но в 2 раза меньше (половина, или равно КД). БО имеет тот же, угол что и БД, так как лежит на нем, и в два раза короче. Следовательно АБ:АД=БО:БЦ (количественно - в 2 раза больше/меньше)
Найти: площадь треугольника АБД. Сперва найдем длину стороны (правильного) пятиуголника. а= = Найдем апофему (перпендикуляр к стороне от центра) h=(S*2)/5*a=60/20,7=2,9 По теореме пифагора найдем расстояние от центра до любой точки. АО=r= sqrt(h²*(a/2)²)= Зная высоту треугольника АБД (апофема + расстояние до точки/радиус описанной окружности) найдем площадь треугольника. Sabd= (a*H)/2=4,17*(2,9+3,57)=27cm²
p.s. Задача выполнена с учетом, что точка Д лежит напротив отрезка AB,а не рядом.
Следовательно АБ:АД=БО:БЦ (количественно - в 2 раза больше/меньше)
Найти: площадь треугольника АБД.
Сперва найдем длину стороны (правильного) пятиуголника. а= =
Найдем апофему (перпендикуляр к стороне от центра)
h=(S*2)/5*a=60/20,7=2,9
По теореме пифагора найдем расстояние от центра до любой точки.
АО=r= sqrt(h²*(a/2)²)=
Зная высоту треугольника АБД (апофема + расстояние до точки/радиус описанной окружности) найдем площадь треугольника.
Sabd= (a*H)/2=4,17*(2,9+3,57)=27cm²
p.s. Задача выполнена с учетом, что точка Д лежит напротив отрезка AB,а не рядом.
удачи:))