Изменив рисунок, получаем: прямая d пересекает три прямые a, b и с.
Чтобы была возможность именовать углы, обозначим на прямых точки A, B, C, D, E, F, K, L, М, Р и R (см. рисунок).
Не забываем: )
Если при пересечении двух прямых секущей накрест лежащие углы равны, или соответственные углы равны, или сумма односторонних углов равна 180°, то прямые параллельны.
1) Вертикальные углы при пересечении двух прямых всегда равны, а это значит:
∠РКВ=∠AKL=112°,
∠KLD=∠CLM=112°,
∠EML=∠RMF=68°.
2) Как видим из предыдущего пункта, ∠PKB=∠KLD=112° ⇒ прямые a и b параллельны, т.к. углы равны как соответственные, а прямая d — секущая.
3) Прямые b и c тоже параллельны, покажем это.
Известно, что ∠CLM=122°, ∠EML= 68°.
∠CLM+∠EML=122°+68°=180°.
Согласно теореме, если две прямые при пересечении секущей параллельны, то их односторонние углы в сумме составляют 180°.
∠CLM+∠EML=180° ⇒ прямые b и c параллельны! (т.к. сумма одностор. углов 180°, прямая d — секущая)
4) Из 2 и 3 пунктов известно, a||b и b||c ⇒ a||c ⇒ a||b||c.
В задании на рисунке две прямых с.
Изменив рисунок, получаем: прямая d пересекает три прямые a, b и с.
Чтобы была возможность именовать углы, обозначим на прямых точки A, B, C, D, E, F, K, L, М, Р и R (см. рисунок).
Не забываем: )
Если при пересечении двух прямых секущей накрест лежащие углы равны, или соответственные углы равны, или сумма односторонних углов равна 180°, то прямые параллельны.
1) Вертикальные углы при пересечении двух прямых всегда равны, а это значит:
∠РКВ=∠AKL=112°,
∠KLD=∠CLM=112°,
∠EML=∠RMF=68°.
2) Как видим из предыдущего пункта, ∠PKB=∠KLD=112° ⇒ прямые a и b параллельны, т.к. углы равны как соответственные, а прямая d — секущая.
3) Прямые b и c тоже параллельны, покажем это.
Известно, что ∠CLM=122°, ∠EML= 68°.
∠CLM+∠EML=122°+68°=180°.
Согласно теореме, если две прямые при пересечении секущей параллельны, то их односторонние углы в сумме составляют 180°.
∠CLM+∠EML=180° ⇒ прямые b и c параллельны! (т.к. сумма одностор. углов 180°, прямая d — секущая)
4) Из 2 и 3 пунктов известно, a||b и b||c ⇒ a||c ⇒ a||b||c.
ответ: прямые а, b и с параллельны.
1.
Правильный ответ: б) Проходит через его вершины.
Вариант а — описывает описанный треугольник.
2.
Правильный ответ: в) центр и любую точку окружности.
3.
Правильный ответ: а) 90°.
Объяснение: касательная имеет теорему, которая гласит, что радиус, проведённый с точки касания — перпендикулярен касательной.
4.
Правильный ответ: а) по одну сторону от.
5.
CA — радиус, проведённый с точки касания, то есть — он перпендикулярен касательной, то есть: он образует прямой угол с ней.
Следовательно: <CAB = 90°.
Один из острых углов: 63° ⇒ <ABC = 90-63 = 27°.
Правильный ответ: а) 27
6.
Так как центр окружности — O, то <BOC — центральный, что означает, что: любой отрезок, проведённый с любой точки окружности до её центра — радиус.
То есть:
Так как стороны равны, то и углы, прилежащие боковым сторонам — тоже:
Теперь — проведём высоту OM.
Так как треугольник BOC — равнобедренный, то: высота равна биссектрисе и медиане.
То есть:
Правильный ответ: вариант б).
7.
Я как поняла, тебе только ответы нужны, да, не объяснение?
Тогда сразу говорю, правильный ответ: вариант в).
8.
Правильный ответ: вариант б).
9.
Правильный ответ: вариант a).
10.
Правильный ответ: вариант в).