Найти длины боковых сторон треугольника АВС, то есть АВ и ВС — ?
1. Рассмотрим равносторонний треугольник ACD. У него АС = АD = DС. Периметр треугольника ACD, то есть Р ACD = АС + АD + DС, тогда АС = АD = DС = 21 : 3 = 7 (сантиметров).
2. Рассмотрим треугольник АВС. Его периметр, то есть Р АВС = АВ + ВС + АС, а АВ = ВС, то получим:
Объяснение:
1 -е задание отправили, как я понял. Его решать не надо.
***
2. ABCD - четырехугольник. CD=8 см. AC - диагональ.
По теореме Пифагора
AD=√17²-8²=√289-64=√225=15 см.
***
3. Высота в равнобедренном треугольнике является его медианой и биссектрисой. Следовательно:
АЕ=СЕ=24/2=12см.
Боковая сторона АВ=ВС=√12²+5²=√144+25=√169=13 см.
***
4. ABCD - трапеция. ВЕ и СF высоты Из ΔАВЕ АЕ=√10²-8² =√100-64=√36=6 см.
АЕ=DF=6 см. AD =ВС+2*АЕ=7+2*6= 19 см.
S трапеции =h(a+b)/2=8(7+19)/2=8*26/2 =104 см ².
***
5. Из ΔACD
√(5x)²-x² = 12;
√25x²-x²=12;
√24x²=12;
2x√6=12;
x=√6 см - сторона АВ=CD
AC=5√6 см.
Площадь ΔАВС=S(ABCD)/2=12*√6/2 = 6√6 см ².
С другой стороны SΔABC=AC*BH/2=6√6 см ².
Откуда BH=2S/AC=12√6: 5√6= 2.4 см.
Дано:
треугольник АВС равнобедренный,
АС — основание,
треугольник ACD равносторонний,
Р АВС = 34 сантиметра,
Р ACD = 21 сантиметр.
Найти длины боковых сторон треугольника АВС, то есть АВ и ВС — ?
1. Рассмотрим равносторонний треугольник ACD. У него АС = АD = DС. Периметр треугольника ACD, то есть Р ACD = АС + АD + DС, тогда АС = АD = DС = 21 : 3 = 7 (сантиметров).
2. Рассмотрим треугольник АВС. Его периметр, то есть Р АВС = АВ + ВС + АС, а АВ = ВС, то получим:
АВ = ВС = (34 - 7): 2;
АВ = ВС = 13,5 сантиметров.
ответ: 13,5 сантиметров.