Мы видим, что выделенная часть является прямоугольным треугольником, так как участок квадратной формы. Отсюда следует, что его площадь будет равна полупроизведению катетов. То есть получим: S = 1/2 * 28 * 28 = 392.
Можно объяснить другим Линия, которая отсекает этот участок от квадрата, является его диагональю. Диагональ квадрата делит его на два равных треугольника, а площади равных треугольников так же равны. То есть мы получим, что площадь выделенной части равна половине площади целого квадрата.
1.
∠САО = ∠МВО как накрест лежащие при пересечении АС║ВМ секущей АВ,
∠СОА = ∠МОВ как вертикальные, ⇒
ΔСОА подобен ΔМОВ по двум углам.
СО : ОМ = АС : МВ
10 : ОМ = 15 : 3
ОМ = 10 · 3 : 15 = 2 см
СМ = СО + ОМ = 10 + 2 = 12 см
А2.
∠АРК = ∠АСВ как накрест лежащие при пересечении КР║ВС секущей АС,
∠А общий для треугольников АКР и АВС, ⇒
ΔАКР подобен ΔАВС по двум углам.
Отношение периметров подобных треугольников равно коэффициенту подобия:
Pakp : Pabc = AK : AB
Pakp = Pabc · AK / AB = (16 + 15 + 8) · 4 / 16 = 39 / 4 = 9,75 см
Мы видим, что выделенная часть является прямоугольным треугольником, так как участок квадратной формы. Отсюда следует, что его площадь будет равна полупроизведению катетов. То есть получим: S = 1/2 * 28 * 28 = 392.
Можно объяснить другим Линия, которая отсекает этот участок от квадрата, является его диагональю. Диагональ квадрата делит его на два равных треугольника, а площади равных треугольников так же равны. То есть мы получим, что площадь выделенной части равна половине площади целого квадрата.
S = 1/2 * 28 * 28