В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
karinakarim
karinakarim
20.09.2020 01:09 •  Геометрия

Вравнобедренном треугольнике abc биссектриса cd угла при основании равна основанию ас. точка e лежит на стороне вс так, что угол вde равен углу dca. чему равен угол aеc в градусах?

Показать ответ
Ответ:
lusine07
lusine07
09.04.2023 18:55
)

Задача №3
См. рис. 3. BC || AD, AB и CD — бёдра трапеции. Докажем, что AB=CD.

Если вокруг четырёхугольника можно описать окружность, то сумма противоположных углов равна 180° (необходимое условие). То есть ∠A+∠C=∠B+∠D=180°.

С другой стороны, сумма углов, прилежащих к боковым сторонам трапеции, равна 180° (по теореме о параллельных прямых BC и AD и секущей AB). Следовательно, ∠A+∠B=∠C+∠D=180°.

Сопоставив эти равенства, получим, что ∠A=∠D и ∠B=∠C. Является ли это доказательством, что трапеция равнобедренная? Я не помню, изучают ли в школе эту теорему, поэтому на всякий случай докажу.

Проведём высоты BE и CF (см. рис. 4). Они равны, так как все высоты трапеции равны. Поэтому прямоугольные треугольники ABE и DFC равны (по острому углу и катету). Значит, равны их гипотенузы — AB и CD, что и требовалось доказать.

1.в равнобедренном треугольнике вписана окружность, которая точкой касания делит боковую сторону на
1.в равнобедренном треугольнике вписана окружность, которая точкой касания делит боковую сторону на
1.в равнобедренном треугольнике вписана окружность, которая точкой касания делит боковую сторону на
1.в равнобедренном треугольнике вписана окружность, которая точкой касания делит боковую сторону на
0,0(0 оценок)
Ответ:
123Abc9900
123Abc9900
07.08.2022 13:29
1. Горизонтальная прямая линия
2. Перпендикуляр к ней
2.1 Окружность радиуса R с центром на прямой
2.2 Окружность радиуса R с центром в точке пересечения прямой и первой окружности
2.3 Прямая через точки пересечения двух окружностей. Это перпендикуляр
3. Угол в 30 градусов с перпендикуляром
3.1 Окружность радиуса R с центром в точке пересечения прямой и перпендикуляра
3.2 Окружность радиуса 2R с центром в точке пересечения первой окружности и перпендикуляра
3.3 Прямая через точки пересечения окружности радиуса 2R с прямой и с перпендикуляром. Угол 30 градусов с вертикалью построен
4. Биссектриса угла в 30 градусов
4.1 Окружность из центра угла 30° Радиус произвольный
4.2 Окружность из точки пересечения окружности пункта 4.1 с одной из сторон угла радиусом равным расстоянию между точками пересечения сторон угла окружностью 4.1
4.3 Окружность из точки пересечения окружности пункта 4.1 с другой стороной угла радиусом равным расстоянию между точками пересечения сторон угла окружностью 4.1
4.4 Прямая линия между точками пересечения окружностей 4.2 и 4.3
5. Всё готово, 105° = 90° + 15°
Сциркуля и линейки постройте угол равный 105 с рисунком если можно) и с решением
Сциркуля и линейки постройте угол равный 105 с рисунком если можно) и с решением
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота