Вравнобедренном треугольнике abc точка m середина основания ac. отрезки mf перпендикулярно bc и me перпендикулярно ab построены так что точки f и eпринадлежат bc и ab соответственно докадите что mf равно me
Высота горы ≈ 0,683 км ≈ 683 м. Объяснение: Дано: ΔABC; ВС - высота горы; ∠BAC = 30°; ∠BDC = 45°; AD = 0,5 км. Найти высоту горы BC. Решение. 1) Расстоянием от точки до прямой является длина перпендикуляра, опущенного из этой точки на прямую. ⇒ BC⊥AC, ΔABC прямоугольный, ∠С = 90°, высота горы - катет BC. 2) В ΔABC ∠BAC = 30° (по условию), ∠ACB = 90°, тогда ∠ABC = 180° - 30° - 90° = 60°. Обозначим для удобства высоту горы катет ВС = x. В прямоугольном треугольнике катет, лежащий против угла 30° равен половине гипотенузы ⇒ гипотенуза AB = 2x км. 3) В ΔDBC ∠BDC = 45° (по условию), ∠DCB = 90°, тогда ∠DBC = 180° - 90° - 45° = 45°. ⇒ ΔDBC равнобедренный, так как имеет два равных угла ⇒ DC = BC = x км. 4) Тогда в ΔABC сторона AC = x + 0,5 км. Из ΔABC найти BC можно двумя По теореме Пифагора:
ответ: 32
Объяснение:
Противоположные углы равны, так что один угол 150, а второй 180-150 = 30 градусов.
Напротив угла 30 градусов лежит половина гипотенузы в прямоугольном треугольнике. Опустим высоту из точки B, например.
Получается бок сторона параллелограмма (8см) будет гипотенузой, а высота будет равна 8см / 2 = 4 см, т.к. напротив угла 30 градусов.
Можем найти второй катет по теореме Пифагора: x = = 4 см
(но нам он не нужен)
Для нахождения площади параллелограмма нужно высоту умножить на бОльшую сторону)
8*4 = 32 см^2
Объяснение:
Дано: ΔABC; ВС - высота горы; ∠BAC = 30°; ∠BDC = 45°; AD = 0,5 км.
Найти высоту горы BC.
Решение.
1) Расстоянием от точки до прямой является длина перпендикуляра, опущенного из этой точки на прямую.
⇒ BC⊥AC, ΔABC прямоугольный, ∠С = 90°, высота горы - катет BC.
2) В ΔABC ∠BAC = 30° (по условию), ∠ACB = 90°,
тогда ∠ABC = 180° - 30° - 90° = 60°.
Обозначим для удобства высоту горы катет ВС = x. В прямоугольном треугольнике катет, лежащий против угла 30° равен половине гипотенузы ⇒ гипотенуза AB = 2x км.
3) В ΔDBC ∠BDC = 45° (по условию), ∠DCB = 90°,
тогда ∠DBC = 180° - 90° - 45° = 45°. ⇒ ΔDBC равнобедренный, так как имеет два равных угла ⇒ DC = BC = x км.
4) Тогда в ΔABC сторона AC = x + 0,5 км.
Из ΔABC найти BC можно двумя
По теореме Пифагора: