Доказательство утверждения проводится следующим образом. Сначала принимают предположение, что утверждение неверно, а затем доказывают, что при таком предположении было бы верно некоторое утверждение , которое заведомо неверно. Полученное противоречие показывает, что исходное предположение было неверным, и поэтому верно утверждение , которое позакону двойного отрицания равносильно утверждению .
В интуиционистской логике закон исключённого третьего не действует, поэтому такие доказательства в ней не принимаются.
Т.к. угол при основании равен 60°, то проводя высоту и получая прямоугольный треугольник, второй угол равен 30°. Тогда часть большего основания, лежащего напротив этого угла, равна 12/2 = 6, т.е. её половине. Аналогично и с другой стороной трапеции (т.к. она равнобедренная, то будет то же самое). Теперь по теореме Пифагора найдём высоту: h = √(12²-6²) = √(144-36) = √108 = 6√3. Теперь найдём всю длину большего основания: Две части мы нашли (они равны по 6 см), а третья часть равна меньшему основанию, т.к. высоты образуют прямоугольник, а в прямоугольнике противоположные стороны равны. Тогда большее основание равно 6 + 6 + 24 = 36. Теперь находим площадь по формуле S = 1/2(a+b)•h S = 1/2(24+36)•6√3 = 30•6√3 = 180√3.
Доказательство утверждения проводится следующим образом. Сначала принимают предположение, что утверждение неверно, а затем доказывают, что при таком предположении было бы верно некоторое утверждение , которое заведомо неверно. Полученное противоречие показывает, что исходное предположение было неверным, и поэтому верно утверждение , которое позакону двойного отрицания равносильно утверждению .
В интуиционистской логике закон исключённого третьего не действует, поэтому такие доказательства в ней не принимаются.
Теперь по теореме Пифагора найдём высоту:
h = √(12²-6²) = √(144-36) = √108 = 6√3. Теперь найдём всю длину большего основания:
Две части мы нашли (они равны по 6 см), а третья часть равна меньшему основанию, т.к. высоты образуют прямоугольник, а в прямоугольнике противоположные стороны равны. Тогда большее основание равно 6 + 6 + 24 = 36.
Теперь находим площадь по формуле S = 1/2(a+b)•h
S = 1/2(24+36)•6√3 = 30•6√3 = 180√3.