В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Adn2001
Adn2001
08.02.2020 16:49 •  Геометрия

Вравнобедренный треугольник вписана окружность радиус которой равен 10 точка касания делит боковую сторону на отрезки длины которых относятся как 8: 5 считая от вершины равнобедренного треугольника найдите площадь этого треугольника

Показать ответ
Ответ:
salsa555
salsa555
24.07.2020 15:26
ΔABC, стороны AВ=BC,
Вписанная окружность с центром О и радиусом R=10 касается сторон треугольника АВ, ВС и АС в точках Е, К, М.
По условию ВЕ/АЕ=ВК/КС=8/5
ВК=ВЕ=8х
АЕ=КС=5х
Согласно свойству касательных, проведенных из одной точки:
АЕ=АМ=5х и МС=КС=5х
Получается, что стороны ΔАВС равны АВ=АЕ+ВЕ=13х, ВС=13х и АС=АМ+МС=5х+5х=10х.
Полупериметр ΔАВС р=(2АВ+АС)/2=(2*13х+10х)/2=18х
Формула радиуса вписанной окружности R 
R=Sавс/р=√(р-АВ)(р-ВС)(р-АС)/р=√(18х-13х)²(18х-10х)/18х=√100х²/9=10х/3
х=3R/10=3
Тогда р=18*3=54
Sавс=рR=54*10=540
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота