В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
abukaka
abukaka
16.02.2023 15:16 •  Геометрия

Вравнобедренный триугольник, боковая сторона которого равна 18 см и основание 12 см, вписана окружность, к ней проведена касательная, паралельная основанию. найти длину отрезка касательной ограниченной точками касания с боковыми сторонами. заранее ))

Показать ответ
Ответ:
gumarin78
gumarin78
27.05.2020 16:20

S = pr/2 = aH/2, где p - периметр 18 + 18 + 6 = 42, Н - высота, а = 6 - основание, r - радиус вписанной окружности.

Поэтому 

r = Ha/p = H/7;

В треугольнике, отсекаемом проведенной касательной, высота равна Н - 2r = 5H/7;

Поскольку отсекаемый треугольник подобен исходному, отношение оснований равно отношению высот, то есть длина искомого отрезка относится к 6, как 5/7:)

То есть

ответ : 6*5/7 = 30/7.

 

Я не буду исправлять, просто напишу верное решение и верный ответ. Дело в том, что я невнимательно прочел условие и почему то решил, что основание равно 6, а не 12. Что же получится, если основание равно 12?

Метод решения тот же самый.

Периметр равен p = 18 + 18 + 12 = 48;

Радиус вписанной окружности равен r = H*a/p = H*12/48 = H/4; отсюда диаметр равен H/2. 

Расстояние от основания до касательной из условия как раз равно диаметру вписанной окружности.

Это означает, что касательная к вписанной окружности делит высоту к основанию пополам, то есть совпадает со средней линией. 

ответ 6. 

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота