ответ:Географическое положение — «положение географического объекта относительно поверхности Земли, а также по отношению к другим объектам, с которыми он находится во взаимодействии…»[1]. Оно характеризует «место данного объекта в системе пространственных связей и потоков (вещественных, энергетических, информационных) и определяет его отношения с внешней средой»[2]. Обычно отражает геопространственное отношение определенного объекта к внешней среде, элементы которой имеют или могут иметь на него существенное влияние. В общественной географии положение обычно определяется в двухмерном пространстве (отображаемом на карте). В физической географии непременно учитывается и третье изменение — абсолютная или относительная высота расположения объектов[3].
ответ:Географическое положение — «положение географического объекта относительно поверхности Земли, а также по отношению к другим объектам, с которыми он находится во взаимодействии…»[1]. Оно характеризует «место данного объекта в системе пространственных связей и потоков (вещественных, энергетических, информационных) и определяет его отношения с внешней средой»[2]. Обычно отражает геопространственное отношение определенного объекта к внешней среде, элементы которой имеют или могут иметь на него существенное влияние. В общественной географии положение обычно определяется в двухмерном пространстве (отображаемом на карте). В физической географии непременно учитывается и третье изменение — абсолютная или относительная высота расположения объектов[3].
Объяснение:
Объяснение:
given, cosA + cosB + cosC = 3/2
=> 2(2cos(A + B)/2 . cos(A - B)/2) + 2cosC = 3
=> 2(2cos(pi/2 -c/2) .cos(A - B)/2 + 2(1 - 2sin^2(A/2)) = 3
=> 4sin(c/2) .cos(A - B)/2 + 2 - 4sin^2(A/2)) = 3
=> 4sin^2(A/2) - 4sin(c/2) .cos(A - B)/2 + 1 = 0
This is a quadratic equation in sinc/2, and it has real roots
Therefore , Descriminant >= 0
=> (-4cos(A - B)/2)^2 - 4*4*1 >= 0
=> (cos(A - B))^2 >= 1
=> cos(A - B) = 1, since cosine of any angle can't be > 1
=> A - B = 0
=> A = B
Similarily we can prove that B = C
Thus A = B = C, triangle is equilateral