В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
слмтл
слмтл
05.06.2020 04:48 •  Геометрия

Вравностороннюю трапецию вписан круг который точкой касания делит боковую сторону на отрезки длиной 16 и 9 см.найдите площадь!

Показать ответ
Ответ:
polly132
polly132
02.10.2020 16:42
Пусть ABCD - равносторонняя трапеция с основаниями AD (нижнее) и BC (верхнее), KLMN - точки касания окружности со сторонами трапеции AB, BC, CD и AD соответственно. Тогда AK=16, KB=9. Т. к. трапеция равносторонняя, то DM=AK=16, MC=KB=9. Т.к. касательные, проведённые из одной точки к окружности, равны, то BK=BL=9, CL=CM=9, AK=AN=16, DM=DN=16. Т.е. верхнее основание BC=BL+LC=9+9=18, нижнее AD=AN+ND=16+16=32.

Проведём высоты трапеции BH и СG. Т.к. трапеция равнобедренная, то HG=BC=18, AH= \frac{AD-HG}{2}= \frac{32-18}{2}=7. Тогда по теореме Пифагора в треугольнике ABH BH= \sqrt{AB^2-AH^2}= \sqrt{(9+16)^2-7^2}=\sqrt{576}=24.

Площадь трапеции S= \frac{AD+BC}{2}*BH= \frac{32+18}{2}*24=600.

ответ: S=600
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота