1) По формуле Герона найдём площадь тр-ка S = корень (р*(р-а) *(р-в) *(р-с) ) р ( полупериметр) = (8+6+4)/2 = 9см S² = 9*1*3*5 = 135, тогда S = 3* (корень из15 ) 2) меньшая высота тр-ка Н опущена на большую сторону 8см тогда S = 0,5*8*Н = 3* (корень из15 ) Н = 0,75 (корень из15 ) стороны: а = 6, в = 4, с = 8 Нс = (2S)/C Ha = (2S) / a Hb = (2S)/b S = корень (р*(р-а) *(р-в) *(р-с) ) р = 1/2*(а+в+с) р = 9 S = приблиз 12 см2 Нс = 3 см. Нв = 6 см На = 4см отсюда меньшая высота - проведенная к стороне с
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.