Параллелограмм — четырехугольник, у которого противоположные стороны равны. Допустим, что наш параллелограмм это АВСД. У него АВ=СД, а ВС=АД. Периметр равен сумме всех сторон, значит АВ+СД+ВС+АД=256 2АВ+2ВС=256.
По условию задачи АВ/ВС=0,27/0,13, и исходя из этой пропорции АВ=0,27ВС/0,13. Подставим это значение АВ в предыдущее уравнение: 2АВ+2ВС=256. 2*0,27ВС/0,13+2ВС=256. 0,54ВС/0,13+2ВС=256 ВС*54/13+2*13ВС/13=256 54ВС/13+26ВС/13=256 80ВС/13=256 ВС*80/13=256 ВС=256 / 80/13 ВС=256 * 13/80 ВС=41,6 см Значит ВС=АД=41,6 см
Теперь найдем размеры других сторон параллелограмма: АВ=0,27ВС/0,13 = 0,27*41,6/0,13=86,4 см Значит АВ=СД=86,4 см
Допустим, что наш параллелограмм это АВСД.
У него АВ=СД, а ВС=АД.
Периметр равен сумме всех сторон, значит
АВ+СД+ВС+АД=256
2АВ+2ВС=256.
По условию задачи АВ/ВС=0,27/0,13, и исходя из этой пропорции
АВ=0,27ВС/0,13.
Подставим это значение АВ в предыдущее уравнение:
2АВ+2ВС=256.
2*0,27ВС/0,13+2ВС=256.
0,54ВС/0,13+2ВС=256
ВС*54/13+2*13ВС/13=256
54ВС/13+26ВС/13=256
80ВС/13=256
ВС*80/13=256
ВС=256 / 80/13
ВС=256 * 13/80
ВС=41,6 см
Значит ВС=АД=41,6 см
Теперь найдем размеры других сторон параллелограмма:
АВ=0,27ВС/0,13 = 0,27*41,6/0,13=86,4 см
Значит АВ=СД=86,4 см
ответ: ВС=АД=41,6 см, АВ=СД=86,4 см
Дано:
Прямоугольный треугольник АВС
угол С = 90 градусов
СН - высота
АН = 25 см
НВ = 9 см
Найти: СА, СВ, АВ и S - ?
1) Нам известно, что высота, которая опущена из вершины прямого угла, равна:
СН = √(АН * НВ),
СН = √(25 * 9);
СН = √225;
СН = 15 см;
2) S = 1/2 * СН * АВ,
АВ = АН + НВ = 25 + 9 = 34 (см);
S = 1/2 * 15 * 34 = 255 см^2
3) Треугольник СВН - прямоугольный. По теореме Пифагора:
СВ^2 = СН ^2 + НВ^2;
СВ^2 = 15^2 + 9^2;
СВ^2 = 225 + 81;
СВ^2 = 306;
СВ = 3√34 см;
4) Треугольник СВА - прямоугольный. По теореме Пифагора:
СА^2 = СН ^2 + АН^2;
СА^2 = 15^2 + 25^2;
СА^2 = 225 + 625;
СА^2 = 850;
СА = 5√34 см.
ответ: 5√34 см; 3√34 см; 34 см; 255 см^2.