Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.
Диагональ нижнего основания пирамиды l1 равно
(l1)^2=8^2+8^2=128
l1=8*sqrt(2)
Диагональ верхнего основания пирамиды l2 равно
(l2)^2=6^2+6^2=72
l2=6*sqrt(2)
Половина нижней диагонали равна 4*sqrt(2), а половина верхней 3*sqrt(2)
Их разность равна 4*sqrt(2)- 3*sqrt(2)=sqrt(2)
Рассмотрим прямоугольный треугольник, стороны которого равны sqrt(2) и высота пирамиды - это катеты, а гипотенуза - боковое ребро пирамиды (n), тогда
n^2=5^2+(sqrt(2)^2=25+2=27
n=sqrt(27) - боковое ребро пирамиды
Объяснение: