Все рёбра правильной треугольной пирамиды sbcd с вершиной s равны 9. основание o высоты so этой пирамиды является серединой отрезка ss1, m — середина ребра sb , точка l лежит на ребре cd так, что cl : ld = 7 : 2. а) докажите, что сечение пирамиды sbcd плоскостью s1lm — равнобокая трапеция. б) вычислите длину средней линии этой трапеции.
Допустим AK < BK (точка K ближе к вершине A) .
Обозначаем сторону основания правильной пирамиды
AB=BC =CD =DA =a ;
Пусть выполняется S(ABCD) =S(KPM) ⇔
a² =KM*PO/2 ⇔a² =KM*(1,5a)/2⇒KM= 4a/3 . AB= a< 4a/3 < a√2 =AC ,.т.е KM не ⊥ AD и KM не совпадает с диагоналями основания .
б)
Через центр основания O проведем EF ⊥ AD (тоже самое EF ⊥ CD), где
E ∈ [AD] , F ∈ [BC] . || K∈[AE] ||
ΔOEK = ΔOFM по второму признаку равенства треугольников (OE=OF=AB/2 ;∠OEK =∠OFM=90° и ∠KOE =∠MOF-вертикальные углы) .
MF=KE .
---
Sпол(PABMK) = S(ABMK) +S₁бок .
S(ABMK) =(AK +BM)/2 *AB ; AK +BM =(a/2 -KE) +(a/2 +MF)=a.
⇒S(ABMK) =(AK +BM)/2 *AB=a/2 *a =a²/2.
S₁бок =S(APK) +S(BPM)+S(APB) +S(KPM) =AK*h/2+BM*h/2+a*h/2+a²=
=(AK+BM)*h/2 +.a*h/2 +a² =a*h/2+a*h/2+a² =a*h+a² .
Sпол(PABMK)=a²/2+a*h+a²=3a²/2+a*h = (3a+2a*h)/2, где h_длина апофема .
ΔEPF h =EP=√((a/2)² +PO²) =√(a²/4 +9a²/4) =(a√10)/2 .
---
Sпол(PABCD) = S(ABMK) +S₂бок =a²+4*a*h/2 =a²+2*a*h ;
Sпол(PABMK)/ Sпол(PABCD) =(3a²+2a*h )/2 : (a²+2*a*h) =
=a²(3+√10)/2 : a² (1+√10) =(3+√10) / 2(1+√10).
Объяснение:
1) На произвольной прямой отложить отрезок, равный длине периметра. Обозначить его АК.
2) От т.А циркулем отметить на АК точку С, АС= длине данного основания.
3). Отрезок СК разделить на две равные части. Для этого из т.С и т.В провести две полуокружности до их пересечения по обе стороны от СК. Точки пересечения соединить прямой ( срединным перпендикуляром). Точку пересечения этой прямой и отрезка СК обозначить М. СМ=МК=длина боковой стороны треугольника.
4). Циркулем с раствором, равным МК, провести из точек А и С дуги до их пересечения. Точку пересечения обозначить В и соединить с т.А и т.С. Треугольник АВС - искомый.