Дан квадрат АВС1Д1. О1О2 - ось цилиндра. АВ⊥О1О2. Диагонали квадрата пересекаются наоси цилиндра в точке О. Через точку О проведём отрезок РЕ║АД1. ∠О2ОЕ=α. Сторона квадрата равна а. АЕ=ЕВ=а/2. Построим плоскость перпендикулярно оси О1О2, проходящую через сторону АВ. Проекция квадрата АВС1Д1 на эту плоскость будет прямоугольник АВСД. Диагонали прямоугольника АВСД пересекаются на оси цилиндра в точке М. Половина диагонали этого прямоугольника и есть радиус цилиндра. АМ=R. В тр-ке ЕОМ ЕМ=ОЕ·sinα=a·sinα/2 (ОЕ=РЕ/2=а/2). В тр-ке АМЕ АМ²=АЕ²+ЕМ²=(а²/4)+(а²sin²α/4)=2a²sin²α/4. AM=a√2·sinα/2 ответ: радиус цилиндра
Пусть трапеция будет ABCD,AB=2,3 см; DC = 7,1 см; <C=45*. Проведем высоту BH, параллельную AD. Рассмотрим четырехугольник ABHD. Он - прямоугольник по признаку, так как <A,<D,<H - прямые. Имеем, что AB = DH = 2,3 см.Получаем, что НС = DC - AB = 7,1 - 2,3 = 4,8 (см) - из аксиомы 3.1. В треугольнике HBC <B = 45* из теоремы о сумме углов треугольника. Значит, так как <B = <C, то по признаку равнобедренного треугольника HBC - равнобедренный. Отсюда следует, что HB=HC = 4,8 см ответ: 4,8 см
Диагонали квадрата пересекаются наоси цилиндра в точке О.
Через точку О проведём отрезок РЕ║АД1. ∠О2ОЕ=α. Сторона квадрата равна а. АЕ=ЕВ=а/2.
Построим плоскость перпендикулярно оси О1О2, проходящую через сторону АВ. Проекция квадрата АВС1Д1 на эту плоскость будет прямоугольник АВСД.
Диагонали прямоугольника АВСД пересекаются на оси цилиндра в точке М. Половина диагонали этого прямоугольника и есть радиус цилиндра. АМ=R.
В тр-ке ЕОМ ЕМ=ОЕ·sinα=a·sinα/2 (ОЕ=РЕ/2=а/2).
В тр-ке АМЕ АМ²=АЕ²+ЕМ²=(а²/4)+(а²sin²α/4)=2a²sin²α/4.
AM=a√2·sinα/2
ответ: радиус цилиндра
В треугольнике HBC <B = 45* из теоремы о сумме углов треугольника. Значит, так как <B = <C, то по признаку равнобедренного треугольника HBC - равнобедренный. Отсюда следует, что HB=HC = 4,8 см
ответ: 4,8 см