Все стороны параллелограмма равны, а его периметр равен 64 см. Один из углов, который диагональ образует со стороной, равен 75°. Найдите площадь параллелограмма. ответ дайте в квадратных сантиметрах.
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
Примем меньшую диагональ за х, и составим уравнение
х*(х+4):2=96
x^2+4x-192=0
Решив уравнение, и отбросив отрицательный корень( так как длина стороны не может быть отрицательна) мы получим длину меньшей диагонали. Она равна 12 см. Тогда большая диагональ равна 16 см.
Как известно, диагонали ромба при пересечении образуют прямой угол, и точкой пересечения делятся пополам. По теореме Пифагора мы найдем сторону ромба из прямоугольного треугольника, образованного его диагоналями.
√6^2+8^2=10. Так как стороны ромба равны, это ответ.
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см
10см
Объяснение:
Площадь ромба находится по формулке S=d1*d2:2
Примем меньшую диагональ за х, и составим уравнение
х*(х+4):2=96
x^2+4x-192=0
Решив уравнение, и отбросив отрицательный корень( так как длина стороны не может быть отрицательна) мы получим длину меньшей диагонали. Она равна 12 см. Тогда большая диагональ равна 16 см.
Как известно, диагонали ромба при пересечении образуют прямой угол, и точкой пересечения делятся пополам. По теореме Пифагора мы найдем сторону ромба из прямоугольного треугольника, образованного его диагоналями.
√6^2+8^2=10. Так как стороны ромба равны, это ответ.