Площадь равна S=r*a+r*(b+c)=b*c*sin(A)/2 По теорем косинусов а*a=b*b+c*c-2bc*cos(A) Есть два уравнения и два неизвестных. Перепишем теорему косинусов так а*а=(b+c)^2-2bc(cos(A)+1) (b+c)=bc*sin(A)/2r-a
ПОПРОБУЕМ:
а*а=(b+c)^2-2bc(cos(A)+1) (b+c)=bc*sin(A)/2r-a (b+c)=x bc=(xr+ar)/sinA a*a=x*x-2*(xr+ar)*(cosA+1)/sinA a*a=x*x-2(x+a)r*ctg(A/2) x*x-2x *ctgA/2r=a*a+2a*r*ctgA/2 (x-ctg(A/2)*r)^2=a*a+2a*r*ctgA/2+(ctg(A/2)*r)^2 (x-ctg(A/2)*r)^2=(a+ctg(A/2)*r)^2 x=a+2r*ctg(A/2) (b+c)= a+2r*ctg(A/2) (вот это, наверное, ввиду простоты выражения , можно было бы и из каких-то иных геометрических соображений получить) (b-c)^2= b*b-2bc+c*c= (a+2r*ctg(A/2))^2-4(xr+ar)/sinA (b-c)=sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))
Конечно, когда решали квадратное уравнение, могли и другие корни посмотреть Получили бы еще и симметричное решение. b и c равноправны и их можно поменять местами. Извините , за некрасивый ответ. Надеюсь, правильный.
1) по формуле Герона
Полупериметр р=(10+10+12):2=16 см
S=√(p(p-a)(p-b)(p-c)=√(16*6*6*4)=√2304=48 см²
48=1/2 * 10 * h₁
h₁=9,6 см
48=1/2 * 12 * h₂
h₂=8 см.
2) по формуле Герона
Полупериметр р=(17+17+16):2=25 дм
S=√(p(p-a)(p-b)(p-c)=√(25*8*8*9)=√14400=120 дм²
120=1/2 * 17 * h₁
h₁=14 2/17 дм
120=1/2 * 16 * h₂
h₂=15 дм.
3) по формуле Герона
Полупериметр р=(4+13+15):2=16 дм
S=√(p(p-a)(p-b)(p-c)=√(16*12*3*1)=√576=24 дм²
24=1/2 * 4 * h₁
h₁=12 дм
48=1/2 * 13 * h₂
h₂=7 5/13 дм.
48=1/2 * 15 * h₃
h₃ = 6 6/7 дм.
По теорем косинусов а*a=b*b+c*c-2bc*cos(A)
Есть два уравнения и два неизвестных.
Перепишем теорему косинусов так
а*а=(b+c)^2-2bc(cos(A)+1)
(b+c)=bc*sin(A)/2r-a
ПОПРОБУЕМ:
а*а=(b+c)^2-2bc(cos(A)+1)
(b+c)=bc*sin(A)/2r-a
(b+c)=x
bc=(xr+ar)/sinA
a*a=x*x-2*(xr+ar)*(cosA+1)/sinA
a*a=x*x-2(x+a)r*ctg(A/2)
x*x-2x *ctgA/2r=a*a+2a*r*ctgA/2
(x-ctg(A/2)*r)^2=a*a+2a*r*ctgA/2+(ctg(A/2)*r)^2
(x-ctg(A/2)*r)^2=(a+ctg(A/2)*r)^2
x=a+2r*ctg(A/2)
(b+c)= a+2r*ctg(A/2)
(вот это, наверное, ввиду простоты выражения , можно было бы и из каких-то иных геометрических соображений получить)
(b-c)^2= b*b-2bc+c*c= (a+2r*ctg(A/2))^2-4(xr+ar)/sinA
(b-c)=sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))
b= (a+2r*ctg(A/2) )/2+ sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))/2
c=(a+2r*ctg(A/2) )/2- sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))/2
Конечно, когда решали квадратное уравнение, могли и другие корни посмотреть
Получили бы еще и симметричное решение. b и c равноправны и их можно поменять местами.
Извините , за некрасивый ответ. Надеюсь, правильный.