Трапеция АВСД, у которой АД-нижнее основание, ВС- верхнее основание. Если трапецию можно вписать в окружность, то трапеция – равнобедренная (АВ=СД). В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон (АД+ВС=АВ+СД). Высота трапеции ВН равна диаметру вписанной окружности (ВН=2*6=12) Средняя линия трапеции МК параллельна основаниям и равна их полусумме (МК=(АД+ВС)/2 или АД+ВС=2МК=2*13=26). Тогда боковые стороны равны АВ+СД=26, значит АВ=СД=26/2=13. Из прямоугольного ΔАВН найдем АН=√(АВ²-ВН²)=√(13²-12²)=√25=5. В равнобедренной трапеции АД=ВС+2АН=ВС+10. Подставим это в АД+ВС=26, получаем ВС+10+ВС=26 ВС=16/2=8 АД=8+10=18 ответ: стороны 13, 8, 13, 18.
Пирамида правильная, значит в основании квадрат. Обозначим пирамиду SАВСД. S -вершина. Проведём диагонали АС и ВД. В квадрате диагональ равна (а корней из2). Где а -сторона квадрата. По условию а=1,тогда АС=ВД= корень из 2. Расстояние между SВ и АС это перпендикуляр ОК из точки пересечения диагоналей О к ВS. Рассмотрим треугольник SВО( можно нарисовать отдельно). Это прямоугольный треугольник, у которого гипотенуза SВ=1(ребро пирамиды), катет ВО=ВД/2=(корень из 2 )/2. Второй катет SО это высота пирамиды. SО= корень из (ВSквадрат-ВОквадрат)=корень из (1-2/4)=(корень из 2)/2. Площадь треугольника Ssво=1/2*ВО*SО, она также равна Ssво=1/2*ВS*ОК. Приравнивая оба этих выражения, получим 1/2*(корень из 2)/2*(корень из 2)/2=1/2*1*ОК. Отсюда искомое расстояние ОК=1/2.
Если трапецию можно вписать в окружность, то трапеция – равнобедренная (АВ=СД).
В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон (АД+ВС=АВ+СД). Высота трапеции ВН равна диаметру вписанной окружности (ВН=2*6=12)
Средняя линия трапеции МК параллельна основаниям и равна их полусумме (МК=(АД+ВС)/2 или АД+ВС=2МК=2*13=26).
Тогда боковые стороны равны АВ+СД=26, значит АВ=СД=26/2=13.
Из прямоугольного ΔАВН найдем АН=√(АВ²-ВН²)=√(13²-12²)=√25=5.
В равнобедренной трапеции АД=ВС+2АН=ВС+10.
Подставим это в АД+ВС=26, получаем
ВС+10+ВС=26
ВС=16/2=8
АД=8+10=18
ответ: стороны 13, 8, 13, 18.
Пирамида правильная, значит в основании квадрат. Обозначим пирамиду SАВСД. S -вершина. Проведём диагонали АС и ВД. В квадрате диагональ равна (а корней из2). Где а -сторона квадрата. По условию а=1,тогда АС=ВД= корень из 2. Расстояние между SВ и АС это перпендикуляр ОК из точки пересечения диагоналей О к ВS. Рассмотрим треугольник SВО( можно нарисовать отдельно). Это прямоугольный треугольник, у которого гипотенуза SВ=1(ребро пирамиды), катет ВО=ВД/2=(корень из 2 )/2. Второй катет SО это высота пирамиды. SО= корень из (ВSквадрат-ВОквадрат)=корень из (1-2/4)=(корень из 2)/2. Площадь треугольника Ssво=1/2*ВО*SО, она также равна Ssво=1/2*ВS*ОК. Приравнивая оба этих выражения, получим 1/2*(корень из 2)/2*(корень из 2)/2=1/2*1*ОК. Отсюда искомое расстояние ОК=1/2.