1) найдём длины сторон. M(-6;1); N(2;4); (MN)^2=(2*(-6))^2+(4-1)^2; (MN)^2=64+9; MN=√73; M(-6;1); K(2;-2); (MK)^2=(2-(-6))^2+(-2-1)^2; (MK)^2=64+9; MK=√73; N(2;4); K(2;-2); (NK)^2=(2-2)^2+(-2-4)^2; (NK)^2=0+36; NK=√36=6; Так как MN=MK=√73, то треугольник MNK - равнобедренный. 2) Опустим высоту МС на сторону NK. Так как треугольник равнобедренный, то МС является и медианой. Точка С - это середина отрезка NK: N(2;4); K(2;-2); Найдём координаты точки С: С{(2+2)/2; (4+(-2))/2}=С(2; 1); Найдём длину высоты МС: М(-6; 1); С(2;1); (МС)^2=(2-(-6))^2+(1-1)^2; (МС)^2=64+0; МС=√64=8; ответ: 8 Мы использовали то, что высота была опущена на основание равнобедренного треугольника. А в общем случае, зная длины трёх сторон нужно найти площадь треугольника. А потом, зная площадь треугольника и длину стороны, на которую проведена высота, находим высоту.
Условие не корректно составлено
Объяснение:
Чтобы треугольник существовал, необходимо чтобы сохранялось неравенство сумма двух сторон должна быть больше третьей стороны. а+b>c;
Проверяем треугольник со сторонами 8см; 8см; 16см.
8+8=16 неравенство не сохраняется, значит такого треугольника не существует.
Формула нахождения площади по Герону
S=√(p(p-a)(p-b)(p-c)); где р- полупериметр треугольника
р=(а+b+c)/2=(8+8+16)/2=32/2=16см
S=√(16(16-8)(16-8)(16-16))=√(16*8*8*0)=0 площади нет, так как треугольник не существует.