Как на рисунке ниже добавь линии грани треугольников, а дальше просто, 180гр - сумма всех углов треугольников, а в тр.ОСБ входит прямоугольник ОДБ. ответ 30 гр.
Дорисуй на рисунке углы: который дан и который нужно найти, ОСБ = равнобедренный треугольник, так как ОС и ОБ радиус, от сюда можно сделать вывод что угол ОСБ=СБА= 60 гр и дальше угол СОБ = 180 - 60 - 60 = 60. Дальше, треугольник ОДБ прямоугольный, значит угол ОБД = 180- 60 - 90 = 30, а так как этот треугольник был образован на хорде которую поделили пополам - угол ОАБ = ОБД= 30
Как на рисунке ниже добавь линии грани треугольников, а дальше просто, 180гр - сумма всех углов треугольников, а в тр.ОСБ входит прямоугольник ОДБ. ответ 30 гр.
Дорисуй на рисунке углы: который дан и который нужно найти, ОСБ = равнобедренный треугольник, так как ОС и ОБ радиус, от сюда можно сделать вывод что угол ОСБ=СБА= 60 гр и дальше угол СОБ = 180 - 60 - 60 = 60. Дальше, треугольник ОДБ прямоугольный, значит угол ОБД = 180- 60 - 90 = 30, а так как этот треугольник был образован на хорде которую поделили пополам - угол ОАБ = ОБД= 30
Объяснение:
Рисунок 380)
∆АВС- прямоугольный треугольник
АС- гипотенуза.
АВ и ВС- катеты.
По теореме Пифагора найдем катет ВС.
ВС²=АС²-АВ²=7²-5²=49-25=24
ВС=√24=2√6 см
Площадь прямоугольного треугольника равна половине произведения двух катетов.
S=1/2*AB*BC=5*2√6/2=5√6 см².
ответ: площадь треугольника равна 5√6.
Рисунок 383)
Дано:
ABCD- прямоугольник.
АВ=9см.
BD=25см
S=?
Решение.
∆ABD- прямоугольный треугольник
BD- гипотенуза.
АВ и AD- катеты.
По теореме Пифагора найдем катет AD
AD²=BD²-AB²=25²-9²=625-81=544см
АD=√544=4√34см
S=AD*AB=9*4√34=36√34см²
ответ: площадь прямоугольника равна 36√34 см².
Рисунок 384)
При условии что внешние углы равны между собой и составляют градусную меру 135°.
Найдем угол <ВСА
<ВСА+<135=180°, смежные углы.
<ВСА=180°-135°=45°.
<ВСА=<САВ, так как внешние углы равны 135°.
В ∆ВСА, углы при СА равны 45° .
Отсюда следует что ∆ВСА- равнобедренный. ВА=ВС
Пусть сторона ВА будет х см. Тогда ВС тоже будет х см.
По теореме Пифагора составляем уравнение.
ВА²+ВС²=АС²
х²+х²=6²
2х²=36
х²=36/2
х²=18
х=√18
х=3√2 см сторона АВ и сторона ВС.
Площадь прямоугольного треугольника равна половине произведения двух катетов.
S=1/2*AB*BC=1/2*3√2*3√2=9см².
ответ: площадь треугольника равна 9см²