В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Янчик312
Янчик312
24.10.2022 07:11 •  Геометрия

Всферу радиусом √66 вписана правильная треугольная пирамида dabc(d-вершина) длина апофемы которой относится к длине высоты как 3: 2 √2 найдите наименьшую площадь сечения пирамиды плоскостью проходящей через вершину пирамиды середину стороны ас и пересекающей сторону вс и рисунок

Показать ответ
Ответ:
SofiaFedirko
SofiaFedirko
01.10.2020 23:06
1) Заданное в задаче отношение 3/2√2 означает, что проекция апофемы на основание ABC равна √(1 - (2√2/3)^2) = 1/3 от апофемы. Проекция апофемы - это радиус вписанной в ABC окружности. В правильном треугольнике ABC он равен 1/3 высоты. Поэтому апофема равна высоте основания, что означает попросту, что в задаче задан ПРАВИЛЬНЫЙ тетраэдр, у которого все грани - одинаковые правильные треугольники.
2) Для этого пункта я не буду делать отдельный чертеж. В задаче задан радиус сферы, описанной около ПРАВИЛЬНОГО тетраэдра. Он равен √66;
Связь между радиусом R и ребром тетраэдра a такая R = a*√6/4;
Я не буду подробно показывать, как это получается - это отдельная задача. Но - в качестве бонуса НЕ ПОДРОБНО и БЕЗ РИСУНКА расскажу, как проще всего это найти. Предположим, задан куб ABCDA1B1C1D1 с ребром длины a√2/2. Тогда фигура с вершинами AB1CD1 - правильный тетраэдр с ребром a (все ребра тетраэдра - диагонали граней куба). Ясно, что сфера, проходящая через вершины тетраэдра, пройдет через все вершины куба, то есть это сфера, описанная вокруг куба с ребром b = a√2/2; радиус такой сферы равен половине большой диагонали куба, то есть R = b√3/2 = a√6/4;
По условию a√6/4 = √66; a = 4√11;
3) Итак, ребро тетраэдра равно a = 4√11; вот теперь можно НАЧАТЬ решать задачу.
Сечение EDQ - треугольник с постоянной стороной ED. Поэтому минимальная площадь будет, если расстояние от Q до ED равно расстоянию между скрещивающимися прямыми ED и BC. То есть НЕ НУЖНО находить, где именно расположена точка Q. Надо найти расстояние между ED и BC, это и будет значение высоты треугольника EDQ к стороне ED в "минимальном сечении"
(это практически всё решение, дальше одни технические действия).
На чертеже EF II BC; поэтому плоскость EDF II BC. Поэтому надо найти расстояние от точки N (середина BC) до плоскости EDF. 
Так как плоскость ADN перпендикулярна BC и EF, то задача "перемещается в плоскость" AND. В РАВНОБЕДРЕННОМ треугольнике ADN (AN = DN) надо найти расстояние от вершины N до медианы DG;
4) Стороны AN = DN = a√3/2; высота к AN тоже известна - это высота всего тетраэдра DO = a√(2/3); поэтому площадь ADN равна AN*DO/2 = a^2*√2/4;
Площадь треугольника DGN равна половине площади ADN, то есть a^2*√2/8;
5) осталось найти DG; по известной формуле для медианы
(2*DG^2) = 2*(AD^2 + DN^2) - AN^2 = 2*a^2 + (a*√3/2)^2 = a^2*11/4;
DG = a*√11/4; (единственное целое число у меня вылезло :))
6) NK*DG/2 = Sdgn; то есть a^2*√2/8 = NK*a√11/4; NK = a√(2/11);
7) Искомая минимальная площадь сечения равна ED*NK/2 = (a√3/2)*(a√(2/11))/2 = (a^2/4)*√(6/11) = 44√(6/11); 
Я вполне мог ошибиться в числах - у меня нет времени все проверять, это вы уж сами. Смысл решения вот такой...
Всферу радиусом √66 вписана правильная треугольная пирамида dabc(d-вершина) длина апофемы которой от
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота