Если вся диагональ = 6√3, то тогда половина диагонали = 3√3. ABCD - ромб, значит диагонали пересекаются под прямым углом, тогда мы можем найти угол в одном из четырёх прямоугольных треугольников. Рассмотрим треугольник BOC (угол BOC = 90°). BC - 6см, BO - 3√3 Теперь можно найти синус угла BCO по противолежащему катету и гипотенузе: 3√3/6=sin3√2=60° Т.к мы ищем углы ромба, то весь угол С = 120° (диагональ ромба делит угол пополам) Угол С=А=120° (т.к ABCD - ромб) Значит на два остальных угла приходится 120°, тогда два оставшихся угла = 60° каждый. ответ: 120°, 120°, 60°, 60°.
ABCD - ромб, значит диагонали пересекаются под прямым углом, тогда мы можем найти угол в одном из четырёх прямоугольных треугольников.
Рассмотрим треугольник BOC (угол BOC = 90°).
BC - 6см, BO - 3√3
Теперь можно найти синус угла BCO по противолежащему катету и гипотенузе:
3√3/6=sin3√2=60°
Т.к мы ищем углы ромба, то весь угол С = 120° (диагональ ромба делит угол пополам)
Угол С=А=120° (т.к ABCD - ромб)
Значит на два остальных угла приходится 120°, тогда два оставшихся угла = 60° каждый.
ответ: 120°, 120°, 60°, 60°.
ответ: 54 - 12√18
Объяснение:
1 часть равна x
Диагональ AC делит прямоугольник на 2 равных треугольника
AD = 3x
По свойству прямоугольника BA = BK = 2x
CD = 2x
S каждого из треугольников будет равна 36 : 2 = 18см2
Составим уравнение для треугольника ACD
S = 0,5 * 3x * 2x
18 = 0,5 * 6 x
6x = 18 : 0.5
6x = 36
x = 6 , а это значит , что 1 часть равна 6
Найдём площадь треугольника ABK
AK по теореме Пифагора = √12 * 12 + 12 * 12 = √288
Высота этого ∆ равна √12 во 2 степени - половина основания во 2 степени , h = √144 - (2√18)^2 = 12- 2√18
S = 0.5 *(12 - 2√18)*4√18 = 2√18* (6 - √18)= 12√18 - 36
S = 36 - 18 -12√18+36 = 54 - 12√18