Более узкая специализация позволяет сосредоточится исключительно на одном виде деятельности специалисту и не отвлекателься на посторонние действия. с одной стороны это позволяет глубже окунуться в свою специальность и делать работу более качественно и быстро. с другой стороны это позволяет выявлять прогрессивные решения в рамках своей специальности, способствующие увеличению проивзодительности. постоянная работа в рамках выделенной специализации, позволяет выработать навыки, которые и увеличчивают производительность самое главное, это отсутствие у специалиста необходимости в смене вида деятельности при создании одного объекта, на смену вида деятельности уходит время и теряется концентрация. утверждая все это, нельзя забывают важную вещь. человек это не "шестеренка системы", чтобы выполнять строго однотипную работу всю жизнь - прикручивать колеса автомобиля на ковеере и все. выполняя работу по узкой специализации, человек должен и обязан непрерывно обучаться и видеть целостную картину работы всей цепочки и представлять какую именно часть работы он делает и что в целом должно в итоге получиться. так он сможет в полной мере предвидеть тенденции развития, правильно обучаться и развивать общества.
CM=MD и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку N.
AE=EM и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку K.
Следовательно: AK=CK и DN=BN
можно также доказать через треугольники ABC и DCB - средняя линия трапеции будет средней линией этих треугольников. Средняя линия треугольника делит стороны пополам, значит диагонали пересекаются пополам.
дана трапеция ABCD
EM - средняя линия
пересекает диагонали в точках К и N
AC и BD - диагонали
из свойств средней линии трапеции: EM||BC||AD
CM=MD и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку N.
AE=EM и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку K.
Следовательно: AK=CK и DN=BN
можно также доказать через треугольники ABC и DCB - средняя линия трапеции будет средней линией этих треугольников. Средняя линия треугольника делит стороны пополам, значит диагонали пересекаются пополам.