Вспомните какими фигурами являются грани куба, грани прямоугольного параллелепипеда, грани треугольной пирамиды. Определите число вершин, рёбер и граней для каждом фигуры
Построим координатный параллелепипед точки А. Отметим на оси х — Ах(1;0;0); у — Ау(0;2;0); z — Аz (0;0;3).
Затем из точки Ах проведем две прямые, параллельную оси у и оси z, из точки Ау — прямые параллельные оси x и оси z; из Аz — параллельные оси х и оси у.
При пересечении прямых получаются точки Аху, Ауz, Ахz. Тогда
Перпендикулярами на координатные оси будут отрезки ААz ААу; АAх на координатные плоскости αху, Ауz АХz. Получаем что основания перпендикуляров: Аху(1;2;0), Аyz(0;2;3), Аxz(1;0;3).ответ:
Углы одного треугольника относятся как 3: 5: 7, а во втором один из углов на 24 градуса больше второго и на 24 градуса меньше 3 угла. Докажите, что треугольники подобны. Пусть углы треугольника 3х, 5х, 7х. Тогда сумма углов треугольника 3х+5х+7х = 15х градусов, что равно 180° Составляем уравнение 15х = 180° ⇒ х=12° Значит углы треугольника 3х=3·12=36° 5х = 5·12 = 60° 7х = 7·12 = 84°
Один из углов второго треугольника на 24 ° больше второго угла, значит 60+24°= 84° и угол на 24° меньше третьего - угол в 60°=84°-24° Значит два угла второго треугольника 84° и 60°, а третий угол 180° - 84° - 60°= 36° углы второго треугольника 84°; 60° ; 36° Треугольники подобны по трём углам.
Построим координатный параллелепипед точки А. Отметим на оси х — Ах(1;0;0); у — Ау(0;2;0); z — Аz (0;0;3).
Затем из точки Ах проведем две прямые, параллельную оси у и оси z, из точки Ау — прямые параллельные оси x и оси z; из Аz — параллельные оси х и оси у.
При пересечении прямых получаются точки Аху, Ауz, Ахz. Тогда
AxAxy = 2; AxAxz = 3; AyAxy = 1; AyAyz = 3; AzAxz = 1; AzAyz = 2;
Перпендикулярами на координатные оси будут отрезки ААz ААу; АAх на координатные плоскости αху, Ауz АХz. Получаем что основания перпендикуляров: Аху(1;2;0), Аyz(0;2;3), Аxz(1;0;3).ответ:
Объяснение:
Пусть углы треугольника 3х, 5х, 7х.
Тогда сумма углов треугольника 3х+5х+7х = 15х градусов, что равно 180°
Составляем уравнение
15х = 180° ⇒ х=12°
Значит углы треугольника 3х=3·12=36° 5х = 5·12 = 60° 7х = 7·12 = 84°
Один из углов второго треугольника на 24 ° больше второго угла, значит 60+24°= 84°
и угол на 24° меньше третьего - угол в 60°=84°-24°
Значит два угла второго треугольника 84° и 60°, а третий угол 180° - 84° - 60°= 36°
углы второго треугольника 84°; 60° ; 36°
Треугольники подобны по трём углам.