Задача решается через подобие треугольников В подобных треугольниках соответствующие стороны пропорциональны. Первый треугольник АВС, где: АВ - это высота столба, АВ=5,4 (м); АС - длина тени столба, ее нужно найти, АС=х (м); угол А=90°, угол В - это угол, под которым падает луч солнца. Второй треугольник КНР, где: КН - это рост человека, КН=170 (см)=1,7 (м); КР - это длина тени человека, КР=1 (м); угол К=90°; угол Н - это угол, под которым падает луч солнца. Прямоугольные треугольники АВС и КНР подобны по острому углу: уг.В=уг.Н; Из подобия треугольников следует соотношение: АВ/КН=АС/КР; 5,4/1,7=х/1; х=3 3/17 (м); ответ: 3 3/17
Пусть ABCDA1B1C1D1 – данная призма, основания ABCD и A1B1C1D1 которой – ромбы со стороной 2, причём DAB = 30o и AA1 = BB1 = CC1 = DD1 = 1 . Если DF – высота ромба ABCD , опущенная на сторону AB , то по теореме о трёх перпендикулярах D1F AB , поэтому DFD1 – линейный угол двугранного угла между плоскостями основания ABCD и диагонального сечения AD1C1B . Так как DF = AD sin 30o = 1 , то tg DFD1 = = 1 . Поэтому DFD1 = 45o < 60o . Значит, данная в условии секущая плоскость пересекает рёбра A1D1 и B1C1 . Обозначим через M и N соответствующие точки пересечения. Поскольку плоскости оснований параллелепипеда параллельны, а также параллельны плоскости противоположных боковых граней, то четырёхугольник AMNB – параллелограмм. Пусть MP – перпендикуляр, опущенный из точки M на плоскость основания ABCD . Поскольку плоскости AA1D1D и ABCD перпендикулярны, точка P лежит на их прямой пересечения AD . Если MQ – высота параллелограмма AMNB , опущенная на сторону AB , то по теореме о трёх перпендикулярах PQ AB , поэтому MQP – линейный угол двугранного угла между плоскостями AMNB и ABCD . По условию задачи MQP = 60o . Значит,
Решение
Пусть ABCDA1B1C1D1 – данная призма, основания ABCD и A1B1C1D1 которой – ромбы со стороной 2, причём DAB = 30o и AA1 = BB1 = CC1 = DD1 = 1 . Если DF – высота ромба ABCD , опущенная на сторону AB , то по теореме о трёх перпендикулярах D1F AB , поэтому DFD1 – линейный угол двугранного угла между плоскостями основания ABCD и диагонального сечения AD1C1B . Так как DF = AD sin 30o = 1 , то tg DFD1 = = 1 . Поэтому DFD1 = 45o < 60o . Значит, данная в условии секущая плоскость пересекает рёбра A1D1 и B1C1 . Обозначим через M и N соответствующие точки пересечения. Поскольку плоскости оснований параллелепипеда параллельны, а также параллельны плоскости противоположных боковых граней, то четырёхугольник AMNB – параллелограмм. Пусть MP – перпендикуляр, опущенный из точки M на плоскость основания ABCD . Поскольку плоскости AA1D1D и ABCD перпендикулярны, точка P лежит на их прямой пересечения AD . Если MQ – высота параллелограмма AMNB , опущенная на сторону AB , то по теореме о трёх перпендикулярах PQ AB , поэтому MQP – линейный угол двугранного угла между плоскостями AMNB и ABCD . По условию задачи MQP = 60o . Значит,
MQ = = = .
Следовательно,
SAMNB = AB· MQ = 2· = .
Объяснение: