Втетраэдре eckp ec=18 см, kp=24 см и ec\perp kp, o — точка пересечения медиан грани ckp. площадь сечения тетраэдра, параллельного рёбрам ec и kp и проходящего через точку o, равна см2.
1) Поскольку этот четырехугольник вписанный, сумма его противоположных углов равна 180° Угол D, противолежащий углу В=80, равен 100; угол С, противолежащий углу А=60, равен 120° ------------------ 2)Вокруг трапеции можно описать окружность тогда и только тогда, когда ее боковые стороны равны. Если основание и боковые стороны трапеции равны, то один из треугольников, на которые диагонали делят трапецию, равнобедренный, основанием в нём является диагональ. Треугольник ВСD равнобедренный, углы ВDС=СВD. Угол ВСD=180-60=120° Отсюда угол ВDС= СDВ= (180-60):2=30°. Углы АВD и АСD равны 120-30=90° Следовательно, треугольники АВD и ACD - прямоугольные. Центр описанной вокруг прямоугольного треугольника окружности лежит на середине его гипотенузы.
Т.к. M равноудалена от A,B,C,D, то A,B,C,D лежат на окружности с центром в т. M. Угол BCD - вписанный, опирается на дугу BAD, т.е. градусная мера дуги BAD=2*112=224 Угол CBA - вписанный, опирается на дугу CDA, т.е. градусная мера дуги CDA=2*128=256 AD - диаметр, поэтому дуга AD равна 180 градусам Тогда дугаBA=дугаBAD-дугаAD=224-180=44 градуса дугаCD=дугаCDA-дугаDA=256-180=76 градусов ДугаBC=дугаAD-дугаAB-дугаCD=180-76-44=60 Т.е. уголBMС=60 градусов - центральный, опирающийся на хорду длиной 4, поэтому радиус (r=AM=MD) равен 4 Диаметр=AD=4*2=8
1) Поскольку этот четырехугольник вписанный, сумма его противоположных углов равна 180°
Угол D, противолежащий углу В=80, равен 100; угол С, противолежащий углу А=60, равен 120°
------------------
2)Вокруг трапеции можно описать окружность тогда и только тогда, когда ее боковые стороны равны.
Если основание и боковые стороны трапеции равны, то один из треугольников, на которые диагонали делят трапецию, равнобедренный, основанием в нём является диагональ.
Треугольник ВСD равнобедренный, углы ВDС=СВD.
Угол ВСD=180-60=120°
Отсюда угол ВDС= СDВ= (180-60):2=30°.
Углы АВD и АСD равны 120-30=90°
Следовательно, треугольники АВD и ACD - прямоугольные.
Центр описанной вокруг прямоугольного треугольника окружности лежит на середине его гипотенузы.
Угол BCD - вписанный, опирается на дугу BAD, т.е. градусная мера дуги BAD=2*112=224
Угол CBA - вписанный, опирается на дугу CDA, т.е. градусная мера дуги CDA=2*128=256
AD - диаметр, поэтому дуга AD равна 180 градусам
Тогда дугаBA=дугаBAD-дугаAD=224-180=44 градуса
дугаCD=дугаCDA-дугаDA=256-180=76 градусов
ДугаBC=дугаAD-дугаAB-дугаCD=180-76-44=60
Т.е. уголBMС=60 градусов - центральный, опирающийся на хорду длиной 4, поэтому радиус (r=AM=MD) равен 4
Диаметр=AD=4*2=8