Втетраэдре sabc основание abc – равносторонний треугольник. грани sab и sac – прямоугольные треугольники с прямыми углами при вершине a, точка n – середина bc. найдите sn, если as=√7, ab=2√3.
В задании фигура с указанными координатами неправильно названа - это параллелограмм. В любом случае диагональю фигуру разбить на 2 треугольника, Искомая площадь равна сумме двух треугольников. Треугольник АВС Точка А Точка В Точка С Ха Уа Хв Ув Хс Ус 2 -2 8 -4 8 8 Длины сторон: АВ ВС АС 6.32455532 12 11.66190379 Периметр Р = 29.98646, p = 1/2Р = 14.99323, Площадь определяем по формуле Герона: S = 36.
Треугольник АСД Точка А Точка С Точка Д Ха Уа Хс Ус Хд Уд 2 -2 8 8 2 10 АС СД АД 11.6619038 6.32455532 12 Периметр Р = 29.99, р = /2Р = 4.99 Площадь определяем по формуле Герона: S = 36. Итого площадь фигуры равна 36 + 36 = 72 кв.ед.
В задании сказано: "найти координаты вектора углов прямоугольного треугольника"??? Наверно, имелось в виду - сторон. А может просто координаты углов треугольника??? Кроме того, уравнение 2х+3х-1=0 задано неверно. Вероятно, это 2х+3у-1=0??? Координаты одного угла найдем, решая совместно уравнения двух заданных сторон треугольника: 2х+3у-1=0 и 3х-у-3=0 . 2х+3у-1=0 3х-у-3=0 обе стороны этого уравнения умножим на 3. 2х+3у-1=0 9х-3у-9=0 складываем два уравнения: 11х -10 = 0 х = 10/11 у = 3х - 3 = 3*(10/11) - 3 = 30/11 - 33/11 = -3/11. Обозначим эту точку А(10/11; -3/11). Одна из координат второй точки известна - одна из вершин, лежащих на этом катете имеет абсциссу, равную 2 - это значение по оси у. Значение х находим из уравнения 2х+3у-1=0 2х +3*2 -1 = 0 2х = -6 + 1 = - 5 х = -5/2 = -2,5. Обозначим эту точку В(-2,5; 2). Определился один катет АВ, его вектор АВ(-3,409; 2,273), его модуль (длина) равен |AB| = 4,0972. Уравнение прямой, на которой лежит этот катет, преобразуем в уравнение с коэффициентом вида у = кх + в: 2х+3у-1=0 3у = -2х + 1 у = -(2/3)х + 1/3 Уравнение прямой, на которой находится второй катет, имеет коэффициент, равный -1/к₁ = -1 /(-(2/3)) = 3/2 = 1,5. Значение параметра в находим из выражения в=у2-((у2-у1)/(х2-х1))*х2, где (у2-у1)/(х2-х1) = к. Тогда в = 2 - 1,5*(-2,5) = 2 + 3,75 = 5,75 и уравнение приобретает вид у = 1,5х + 5,75. Точку пересечения второго катета с гипотенузой находим совместным решением их уравнений. Для этого в заданное уравнение гипотенузы подставляем найденное значение у второго катета: 3х-у-3=0 3х-1,5х - 5,75-3=0 1,5х = 8,75 х = 8,75 / 1,5 = 5,833 у = 3х - 3 = 3* 5,833 - 3 = 17,5 - 3 = 14,5. Эту точку обозначим С(5,833; 14,5). Вектор второго катета ВС - Вектор ВС (8,333; 12,5). Вектор гипотенузы АС - Вектор АС (4,924; 14,773) Модули векторов (их длины): Расстояние между точками. d = v ((х2 - х1 )^2 + (у2 - у1 )^2 ) АВ = 4.0972 ВС = 15.023 АС = 15.572 Периметр равен 34.692. Чертёж надо сделать самому по рассчитанным координатам точек.
В любом случае диагональю фигуру разбить на 2 треугольника,
Искомая площадь равна сумме двух треугольников.
Треугольник АВС
Точка А Точка В Точка С
Ха Уа Хв Ув Хс Ус
2 -2 8 -4 8 8
Длины сторон:
АВ ВС АС
6.32455532 12 11.66190379
Периметр Р = 29.98646,
p = 1/2Р = 14.99323,
Площадь определяем по формуле Герона: S = 36.
Треугольник АСД
Точка А Точка С Точка Д
Ха Уа Хс Ус Хд Уд
2 -2 8 8 2 10
АС СД АД
11.6619038 6.32455532 12
Периметр Р = 29.99, р = /2Р = 4.99
Площадь определяем по формуле Герона: S = 36.
Итого площадь фигуры равна 36 + 36 = 72 кв.ед.
Координаты одного угла найдем, решая совместно уравнения двух заданных сторон треугольника: 2х+3у-1=0 и 3х-у-3=0 .
2х+3у-1=0
3х-у-3=0 обе стороны этого уравнения умножим на 3.
2х+3у-1=0
9х-3у-9=0 складываем два уравнения:
11х -10 = 0 х = 10/11 у = 3х - 3 = 3*(10/11) - 3 = 30/11 - 33/11 = -3/11.
Обозначим эту точку А(10/11; -3/11).
Одна из координат второй точки известна - одна из вершин, лежащих на этом катете имеет абсциссу, равную 2 - это значение по оси у. Значение х находим из уравнения 2х+3у-1=0
2х +3*2 -1 = 0 2х = -6 + 1 = - 5 х = -5/2 = -2,5.
Обозначим эту точку В(-2,5; 2).
Определился один катет АВ, его вектор АВ(-3,409; 2,273), его модуль (длина) равен |AB| = 4,0972.
Уравнение прямой, на которой лежит этот катет, преобразуем в уравнение с коэффициентом вида у = кх + в:
2х+3у-1=0
3у = -2х + 1
у = -(2/3)х + 1/3
Уравнение прямой, на которой находится второй катет, имеет коэффициент, равный -1/к₁ = -1 /(-(2/3)) = 3/2 = 1,5.
Значение параметра в находим из выражения в=у2-((у2-у1)/(х2-х1))*х2, где (у2-у1)/(х2-х1) = к. Тогда в = 2 - 1,5*(-2,5) = 2 + 3,75 = 5,75 и уравнение приобретает вид у = 1,5х + 5,75.
Точку пересечения второго катета с гипотенузой находим совместным решением их уравнений. Для этого в заданное уравнение гипотенузы подставляем найденное значение у второго катета: 3х-у-3=0
3х-1,5х - 5,75-3=0
1,5х = 8,75 х = 8,75 / 1,5 = 5,833
у = 3х - 3 = 3* 5,833 - 3 = 17,5 - 3 = 14,5.
Эту точку обозначим С(5,833; 14,5).
Вектор второго катета ВС - Вектор ВС (8,333; 12,5).
Вектор гипотенузы АС - Вектор АС (4,924; 14,773)
Модули векторов (их длины):
Расстояние между точками. d = v ((х2 - х1 )^2 + (у2 - у1 )^2 )
АВ = 4.0972
ВС = 15.023
АС = 15.572
Периметр равен 34.692.
Чертёж надо сделать самому по рассчитанным координатам точек.