Объяснение:
Дано: Правильная шестиугольная пирамида SABCDEF.
SO=15 см - высота
ВА=20 см - сторона основания
Найти:
Боковое ребро AS; апофему SH, площадь боковой поверхности.
Правильная шестиугольная пирамида имеет в основании правильный шестиугольник. Боковые грани - равнобедренные треугольники.
1. Рассмотрим ΔВОА - равносторонний (свойство правильного шестиугольника)
⇒ОА=20 см.
2. Рассмотрим ΔASO - прямоугольный (SO - высота)
По т. Пифагора:
3. Рассмотрим ΔASB - равнобедренный.
⇒SH - высота, медиана.
⇒ВН=AH=10 см
4. Рассмотрим ΔHSA - прямоугольный.
5. Площадь боковой поверхности равна площади 6 граней.
Найдем сначала площадь одной грани, а затем шести:
АВ=13; EF=8
Дано: ΔАВС - равносторонний;
Δ ADE и ΔDCF - равносторонние
Р (ΔDEF) = 21
P (ABCFE) = 47
Найти: АВ; EF
Треугольники равносторонние ⇒ у них все стороны равны.
Пусть сторона ΔAED равна a, а сторона ΔDCF равна b.
⇒ сторона ΔАВС равна a+b.
1. Рассмотрим ΔEDF.
P (ΔEDF) = 21 ⇒ EF =21 - (a+b) = 21 - a - b
2. Рассмотрим ABCFE.
Р (ABCFE) = 47
Р (ABCFE) = AB + BC + CF + EF +AE
47 = a+b+a+b+b+21-a-b+a
47 = 2a +2b +21
2(a+b) = 26
a+b = 13
3. АВ = a+b = 13
EF = 21 - (a+b) = 21 -13 = 8
Объяснение:
Дано: Правильная шестиугольная пирамида SABCDEF.
SO=15 см - высота
ВА=20 см - сторона основания
Найти:
Боковое ребро AS; апофему SH, площадь боковой поверхности.
Правильная шестиугольная пирамида имеет в основании правильный шестиугольник. Боковые грани - равнобедренные треугольники.
1. Рассмотрим ΔВОА - равносторонний (свойство правильного шестиугольника)
⇒ОА=20 см.
2. Рассмотрим ΔASO - прямоугольный (SO - высота)
По т. Пифагора:
3. Рассмотрим ΔASB - равнобедренный.
⇒SH - высота, медиана.
⇒ВН=AH=10 см
4. Рассмотрим ΔHSA - прямоугольный.
По т. Пифагора:
5. Площадь боковой поверхности равна площади 6 граней.
Найдем сначала площадь одной грани, а затем шести:
АВ=13; EF=8
Объяснение:
Дано: ΔАВС - равносторонний;
Δ ADE и ΔDCF - равносторонние
Р (ΔDEF) = 21
P (ABCFE) = 47
Найти: АВ; EF
Треугольники равносторонние ⇒ у них все стороны равны.
Пусть сторона ΔAED равна a, а сторона ΔDCF равна b.
⇒ сторона ΔАВС равна a+b.
1. Рассмотрим ΔEDF.
P (ΔEDF) = 21 ⇒ EF =21 - (a+b) = 21 - a - b
2. Рассмотрим ABCFE.
Р (ABCFE) = 47
Периметр - сумма длин всех сторон.Р (ABCFE) = AB + BC + CF + EF +AE
47 = a+b+a+b+b+21-a-b+a
47 = 2a +2b +21
2(a+b) = 26
a+b = 13
3. АВ = a+b = 13
EF = 21 - (a+b) = 21 -13 = 8