МР=АС:2, MN=BC:2, PN=AB:2, МР, PN и MN- средние линии ∆ АВС. ⇒ ∆ ВМР и ∆ АВС подобны ( легко докажете сами) Коэффициент подобия k=1/2 Площади подобных треугольников относятся как квадрат коэффициента подобия. S1:S=k²=1/4 Тогда S∆ ABC=48*4=192 Пусть коэффициент отношения сторон ∆АВС будет а. Тогда АВ=ВС=5а, АС=6а Опустим из В высоту на АС. В равнобедренном треугольнике высота еще и медиана и биссектриса, ⇒АN=CN=3a. Найдем по т.Пифагора высоту: BN=√(AB²-AN²)=√16a²=4a По формуле площади треугольника S ∆ ABC=4a*6a:2=12a² 12a²=192 a²=16 a=√16=4 P=5а+5а+6а=16а Р=16*4=64 ------- Можно площадь ∆ АВС найти несколько иначе: МР, PN и MN- средние линии ∆ АВС. Они делят ∆ АВС на 4 равных треугольника. : S ∆ ABC=48*4=192
25.
тр. BCF и тр. BDC
общая сторона BC, 2 равных угла. равны по 2 признаку равенства.
тр. ABE и тр. BCD. 2 равных стороны, равные углы между ними. равны по 1 признаку равенства.
тр. ABE и тр. FBC равны, тк предыдущие треугольники тоже равные.
26.
тр AMB и тр. DNC равны по 3м сторонам. По 3 признаку.
тр. ADM и BNC равны по 3м сторонам, 3 признак.
27.
тр. EDO и тр COF по двум сторонам и углу между ними, 1 признак равенства.
тр. AEO и тр FOB равны по 2м прилежащим углам и стороне. 2 признак
тр. AOD и COB равны, тк предыдущение тр. тоже равны.
28.
тр DEC и тр AFB равны по трем сторонам, 3 признак.
тр FCB и тр. DEA равны по трем сторонам, 3 признак.
29.
тр ADF и тр BEC равны по 2м сторонам и углу между ними. углы равны, тк накрестлежащие. 1 признак
боковые равны по трем сторонам, 3 признак.
31. боковые треугольники равны по 2м сторонам и углу между ними. 1 признак равенства.
32. тр DEO и тр COF равны по 2м сторонам и углу между ними, 1 признак.
боковые равны по 2м сторонам и углу между ними, 1 признак.
∆ ВМР и ∆ АВС подобны ( легко докажете сами)
Коэффициент подобия k=1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия.
S1:S=k²=1/4
Тогда S∆ ABC=48*4=192
Пусть коэффициент отношения сторон ∆АВС будет а.
Тогда АВ=ВС=5а, АС=6а
Опустим из В высоту на АС. В равнобедренном треугольнике высота еще и медиана и биссектриса, ⇒АN=CN=3a.
Найдем по т.Пифагора высоту:
BN=√(AB²-AN²)=√16a²=4a
По формуле площади треугольника
S ∆ ABC=4a*6a:2=12a²
12a²=192
a²=16
a=√16=4
P=5а+5а+6а=16а
Р=16*4=64
-------
Можно площадь ∆ АВС найти несколько иначе:
МР, PN и MN- средние линии ∆ АВС. Они делят ∆ АВС на 4 равных треугольника. : S ∆ ABC=48*4=192