Втрапеции abcd ab-cd,высота bh делить основание на 2 отрезка ,меньший из которых равен 5 см,найдите ad если средняя линия трапеции равно 9 см с дано и решением
1) CN=CD/2=BC => △BCN - равнобедренный, углы при основании равны, ∠CBN=∠CNB
∠ABN=∠CNB (накрест лежащие при AB||CD)
∠ABN=∠CBN, BN - биссектриса ∠ABC (делит угол на два равных)
2) Площади треугольников с равной высотой относятся как их основания. Обозначим площади ABK=8x, AKM=MKC=5x, ACK=10x. Площади треугольников с равным основанием относятся как их высоты. Высоты треугольников ABK и ACK относятся как 8:10. Следовательно площади BKP и CKP относятся как 8:10. Обозначим площади BKP=8y, BKC=18y. Площади BKC и MKC относятся как 8:5.
Угол АОD как вертикальный равен углу ВОС. Рассмотрим треугольник АВС. Он прямоугольный, с прямым углом В, опирающимся на диаметр АС. Так как АО = ОС как радиусы окружности, ВО - медиана, выведенная из прямого угла. Сумма всех внутренних углов треугольника равна 180 градусам. Тогда угол ВАС равен 180 - 90 - 78 = 12 градусам. Треугольник ВОА равнобедренный, так как ВО = ОА как радиусы. Угол ОВА равен 12 градусам, тогда угол ВОА равен 180 - 12 - 12 = 156 градусам, а угол ВОС, смежный углу ВОА, равен 180 - 156 = 24 градусам. Тогда и угол АОD содержит 24 градуса.
1) CN=CD/2=BC => △BCN - равнобедренный, углы при основании равны, ∠CBN=∠CNB
∠ABN=∠CNB (накрест лежащие при AB||CD)
∠ABN=∠CBN, BN - биссектриса ∠ABC (делит угол на два равных)
2) Площади треугольников с равной высотой относятся как их основания. Обозначим площади ABK=8x, AKM=MKC=5x, ACK=10x. Площади треугольников с равным основанием относятся как их высоты. Высоты треугольников ABK и ACK относятся как 8:10. Следовательно площади BKP и CKP относятся как 8:10. Обозначим площади BKP=8y, BKC=18y. Площади BKC и MKC относятся как 8:5.
S(BKC)/S(MKC) =18y/5x =8/5
S(BKP)/S(AKM) =8y/5x =8/5 * 4/9 =32/45
Или по теореме Менелая:
CP/PB *BK/KM *MA/AC =1 <=> CP/PB *8/5 *1/2 =1 <=> CP/PB=10/8
CM/MA *AK/KP *PB/BC =1 <=> AK/KP *8/18 =1 <=> AK/KP=18/8
Площади треугольников с равным углом относятся как произведения сторон, заключающих равные углы.
S(BKP)/S(AKM) =BK*KP/AK*KM =8/5 *8/18 =32/45
Рассмотрим треугольник АВС.
Он прямоугольный, с прямым углом В, опирающимся на диаметр АС.
Так как АО = ОС как радиусы окружности, ВО - медиана, выведенная из прямого угла.
Сумма всех внутренних углов треугольника равна 180 градусам. Тогда угол ВАС равен 180 - 90 - 78 = 12 градусам. Треугольник ВОА равнобедренный, так как ВО = ОА как радиусы. Угол ОВА равен 12 градусам, тогда угол ВОА равен 180 - 12 - 12 = 156 градусам, а угол ВОС, смежный углу ВОА, равен 180 - 156 = 24 градусам. Тогда и угол АОD содержит 24 градуса.