Обозначим точку пересечения диагоналей точкой О. ∠DBC = ∠ACB. Тогда ∆BOC - равнобедренный => BO = CO. Рассмотрим ∆ABO и ∆DCO BO = CO ∠ABD = ∠ACD = 90° ∠AOB =∠DOC. Значит, ∆ABO = ∆DCO - по II признаку (или по катету и острому углу. Из равенства треугольников => AB = CD => ABCD - равнобедренная трапеция.
∠DBC = ∠ACB. Тогда ∆BOC - равнобедренный => BO = CO.
Рассмотрим ∆ABO и ∆DCO
BO = CO
∠ABD = ∠ACD = 90°
∠AOB =∠DOC.
Значит, ∆ABO = ∆DCO - по II признаку (или по катету и острому углу.
Из равенства треугольников => AB = CD => ABCD - равнобедренная трапеция.