В трапеции АВСD диагонали делят ее на треугольники, из которых треугольники ВОС и АОD - подобны , так как <OAD=<OBC, <ODA=<OBC (как внутренние накрест лежащие при параллельных ВС и АD), а <BOC=<AOD (как вертикальные). Из подобия имеем: АО/ОС=AD/ВС=5/2. Значит ВС=(2/5)*AD. Средняя линия трапеции равна полусумме оснований, то есть ВС+AD=14. И ВС=14-AD. тогда (14-AD) = (2/5)*AD, откуда AD=10см. ответ: большее основание трапеции равно 10см.
Из подобия имеем: АО/ОС=AD/ВС=5/2. Значит ВС=(2/5)*AD.
Средняя линия трапеции равна полусумме оснований, то есть ВС+AD=14. И ВС=14-AD. тогда (14-AD) = (2/5)*AD, откуда
AD=10см.
ответ: большее основание трапеции равно 10см.